
 

 

 

 

 

Common Security Module 

CSM Guide for Application Developers 

 

 

Version No: 1.0 

Last Modified: 11/08/2007 

 

 

 

Author :  Vijay Parmar, Kunal Modi 

Team :   Common Security Module (CSM) 

  Purchase Order# 3455 

Client : National Cancer Institute - Center for Bioinformatics, 

  National Institutes of Health, 

  US Department of Health and Human Services  

  



Credits and Resources 

CSM Contributors 

CSM Development 
Team 

Other Development 
Teams 

Guide Program 
Management 

Vijay Parmar 1 Satish Patel 1 Vijay Parmar 1 Avinash Shanbhag 3 

Kunal Modi 1 Dan Dumitru 1 Kunal Modi 1 Charles Griffin 1 

Aynur Abdurazik 2  Charles Griffin 1  

  Wendy Erickson-
Hirons4 

 

    

    
1 Ekagra Software 
Technologies 

2 Science Applications 
International 
Corporation (SAIC) 

3 National Cancer 
Institute Center for 
Bioinformatics 

4 Northern Taiga 
Ventures, Inc. 

    

 

Submitting a Support Issue 

A GForge Support tracker group, which is actively monitored by CSM developers, has been created to track any 

support requests. If you believe there is a bug/issue in the CSM software itself, or have a technical issue that 

cannot be resolved by contacting the NCICB Application Support group, please submit a new support tracker 

using the following link: https://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse . Make sure 

to review any existing support request trackers prior to submitting a new one in order to help avoid duplicate 

submissions. 

Contacting Technical Support 

Technical support is available by contacting the NCICB Application Support group.  There contact information 

is provided below: 

NCICB Application Support http://ncicb.nci.nih.gov/NCICB/support 
Telephone: 301-451-4384   
Toll free: 888-478-4423 

 

 

 

  

https://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse
http://ncicb.nci.nih.gov/NCICB/support


 

Document History 

Document Location 

The most current version of this document is located on the CSM website: http://ncicb.nci.nih.gov/core/CSM  

Revision History 

Version 

Number 

Revision Date Author Summary of Changes 

0.1 09/15/07 Vijay Parmar, Kunal 

Modi 

Initial Table of Contents 

0.2 10/22/07 Vijay Parmar Added new chapters 

1.0 1/05/2007 Vijay Parmar Incorporate updates. 

 

Review 

Name Team/Role Version Date Reviewed Reviewer Comments 

Kunal Modi Developer 1.0 11/08/2007  

Jill Hadfield Technical Writers    

Wendy E. Technical Writer    

 

Related Documents 

More information can be found in the following related CSM documents: 

Document Name 

Software Architecture Document 

CSM Enterprise Architect Model 

Acegi Security CSM Adapter Design Document 

CLM Guide for Application Developers 

 

These and other documents can be found on the CSM website: NCICB CSM 

 

  

http://ncicb.nci.nih.gov/core/CSM
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm


 

Table of Contents 
1. Introduction .................................................................................................................................................................... 8 

2. Scope ............................................................................................................................................................................... 8 

3. Using this Guide .............................................................................................................................................................. 8 

4. CSM Overview ................................................................................................................................................................. 9 

4.1 Explanation ................................................................................................................................................................ 9 

4.2 Security Concepts..................................................................................................................................................... 10 

4.3 Minimal System Requirements ................................................................................................................................ 12 

5. CSM API User Guide ...................................................................................................................................................... 12 

5.1 Workflow.................................................................................................................................................................. 13 

5.2 API Services .............................................................................................................................................................. 13 

5.3 Authentication ......................................................................................................................................................... 14 

5.3.1 Integrating with the Authentication Service ............................................................................................................ 14 

5.3.2 Installation and Deployment configurations ........................................................................................................... 15 

5.3.2.1 JAR Placement ....................................................................................................................................................... 16 

5.3.2.2 Configuring Lock out in Authentication Manager ................................................................................................. 16 

5.3.2.3 RDBMS Credential Provider properties and Login Module configuration ............................................................ 17 

Configuring a Login Module in JAAS ............................................................................................................................. 17 

Configuring a Login Module in JBOSS ........................................................................................................................... 18 

Enabling Encryption in the RDBMS Login Module ........................................................................................................ 19 

5.3.2.4 LDAP Credential Provider properties and Login Module configuration ............................................................... 20 

Configuring LDAP Login Module in JAAS ....................................................................................................................... 20 

Configuring LDAP Login Module in JBoss ...................................................................................................................... 21 

Configuring LDAP Login Module using Anonymous Bind.............................................................................................. 22 

5.3.2.5 Activating CLM Audit Logging ............................................................................................................................... 23 

5.4 Authorization ........................................................................................................................................................... 24 

5.4.1 Integrating CSM API’s Overview .............................................................................................................................. 24 

5.4.1.1 Integrating with the CSM Authorization Service............................................................................................... 24 

5.4.2 Software Products and Scripts ................................................................................................................................. 25 

5.4.3 Installation and Deployment configurations ........................................................................................................... 26 

5.4.4.1 Jar Placement ........................................................................................................................................................ 27 

5.4.4.2 Database Properties and configuration ................................................................................................................ 27 

Create and Prime Database .......................................................................................................................................... 27 



Configure Datasource ................................................................................................................................................... 27 

5.4.4.3 Activate CLM Logging ............................................................................................................................................ 28 

5.5 User Provisioning Tool ............................................................................................................................................. 28 

5.6 Audit Logging ........................................................................................................................................................... 29 

5.6.1 Introduction ............................................................................................................................................................. 29 

5.6.2 Purpose .................................................................................................................................................................... 29 

5.6.3 Jar Placement ........................................................................................................................................................... 29 

5.6.4 Enabling CLM APIs in Integration with CSM APIs ..................................................................................................... 29 

5.6.5 Deployment Steps .................................................................................................................................................... 32 

6. User Provisioning Tool Users Guide .............................................................................................................................. 33 

6.1 Introduction ............................................................................................................................................................. 33 

6.2 Workflow.................................................................................................................................................................. 33 

6.3 Common Basic Functions ......................................................................................................................................... 34 

6.4 Assignments and Associations ................................................................................................................................. 38 

6.5 Super Admin Mode .................................................................................................................................................. 41 

6.5.1 Overview .................................................................................................................................................................. 41 

6.5.2 Workflow.................................................................................................................................................................. 41 

6.5.3 Navigation ................................................................................................................................................................ 42 

6.6 Admin Mode ............................................................................................................................................................ 47 

6.6.1 Overview .................................................................................................................................................................. 47 

6.6.2 Workflow.................................................................................................................................................................. 48 

6.6.3 Navigation ................................................................................................................................................................ 49 

6.7 UPT Installation and Deployment ............................................................................................................................ 60 

6.7.1 Release Contents ..................................................................................................................................................... 60 

6.7.2 Installation Modes ................................................................................................................................................... 60 

6.7.2.1 Single Installation, Singe Schema .......................................................................................................................... 61 

6.7.2.2 Single Installation, Multiple Schema ..................................................................................................................... 61 

6.7.2.3 Local Installation, Local Schema ........................................................................................................................... 62 

6.7.3 Deployment Checklist .............................................................................................................................................. 63 

6.7.4 Deployment Steps .................................................................................................................................................... 63 

7. CSM Web Services Users Guide .................................................................................................................................... 67 

7.1 Overview .................................................................................................................................................................. 67 

7.2 Web Service WSDL and Operation ........................................................................................................................... 67 

7.2.1 Security Web Service WSDL ..................................................................................................................................... 67 

7.2.2 Login Operation ....................................................................................................................................................... 67 



7.2.3 CheckPermission Operation ..................................................................................................................................... 68 

7.3 Workflow for CSM Security Web Service ................................................................................................................. 69 

7.4 Installation of CSM Security Web Service ................................................................................................................ 70 

8. CSM Instance Level and Attribute Level Security ......................................................................................................... 72 

8.1.1 Prior to CSM 4.0 ....................................................................................................................................................... 72 

8.1.2 Instance Level........................................................................................................................................................... 73 

8.1.2.1 Requirements Addressed ...................................................................................................................................... 73 

8.1.2.2 Overall Design ....................................................................................................................................................... 74 

8.1.2.3 Provisioning Instance Level Security ..................................................................................................................... 74 

8.1.2.4 Using Instance Level Security ................................................................................................................................ 77 

8.1.2.5 Known Issues ......................................................................................................................................................... 78 

8.1.3 Attribute Level ......................................................................................................................................................... 79 

8.1.3.1 Requirements Addressed ...................................................................................................................................... 79 

8.1.3.2 Overall Design ....................................................................................................................................................... 79 

8.1.3.3 Provisioning Attribute Level Security .................................................................................................................... 80 

8.1.3.4 Using Attribute Level Security ............................................................................................................................... 80 

8.1.3.5 Know Issues ........................................................................................................................................................... 80 

9. CSM Acegi Adapter ....................................................................................................................................................... 81 

9.1 Overview .................................................................................................................................................................. 81 

9.1.1 Implementation ....................................................................................................................................................... 81 

9.1.1.1 Method Level Security .......................................................................................................................................... 82 

9.1.1.2 Method Parameter Level Security ........................................................................................................................ 83 

9.1.2 Workflow.................................................................................................................................................................. 83 

9.1.3 Integrating and Configuring ..................................................................................................................................... 83 

9.1.3.1 Configure Acegi Security ....................................................................................................................................... 84 

9.1.3.2 Database properties and configuration ................................................................................................................ 84 

Create and Prime Database .......................................................................................................................................... 85 

Configure Datasource ................................................................................................................................................... 85 

Configure Hibernate Configuration file ......................................................................................................................... 86 

9.1.3.3 Configure JAAS LoginModule ................................................................................................................................ 87 

Configuring a Login Module in JAAS ............................................................................................................................. 87 

9.1.3.4 User provisioning via UPT ..................................................................................................................................... 89 

10. CSM caGrid Integration ............................................................................................................................................ 89 

10.1 Authentication ......................................................................................................................................................... 89 

10.1.1 CSM configuration for IdP / Authentication Service ............................................................................................. 89 



10.1.1.1 Configuring RDBMS Login Module for CSM-caGrid IDP Integration ................................................................. 90 

10.1.1.2 Configuring LDAP Login Module for CSM-caGrid IDP Integration .................................................................... 91 

10.2 Authorization ........................................................................................................................................................... 92 

10.2.1 Using Grid Group Nam es for Check Permission ................................................................................................... 92 

10.3 Migrating from CSM v3.2 to CSM v4.0 ..................................................................................................................... 92 

10.3.1 MySQL Migration .................................................................................................................................................. 92 

10.3.2 Oracle Migration ................................................................................................................................................... 93 

Appendix A: CSM Acegi Sample configuration File ............................................................................................................... 93 

Glossary ................................................................................................................................................................................. 97 

 

  



 

CSM Guide for Application Developer 

1. Introduction 
 

This document provides all the information application developers need to successfully integrate with 
NCICB’s Common Security Module (CSM). The CSM was chartered to provide a comprehensive solution to 
common security objectives so not all development teams need to create their own security methodology. 
CSM is flexible enough to allow application developers to integrate security with minimal coding effort. 
This phase of the Common Security Module brings the NCICB team one step closer to the goal of 
application security management, single sign-on, and Health Insurance Portability and Accountability Act 
(HIPPA) compliance.   

2. Scope  
 

This document is a master document that covers all CSM modules that shows how to deploy and integrate 
the CSM services, including Authentication, Authorization, User Provisioning Tool, CSM Security Web 
Services, CSM Acegi Adapter, CSM caGrid Integration. This document covers the User Guide and 
Application Developers Guide for all modules of CSM including CSM API, CSM UPT, CSM Security 
Webservices, CSM Acegi Adapter and CSM caGrid Integration. 

 

3. Using this Guide 
 

Begin by reading the CSM Overview followed by CSM API User Guide sections. It will give detailed 
knowledge and workflow for a User to successfully integrate CSM into their applications. The CSM UPT 
User Guide section gives the workflow and details about the Authorization Policy provisioning necessary to 
use CSM for Authentication or Authorization. Once the primary features of Authentication, Authorization 
and User Provisioning are understood, read the CSM Security Web Services Guide  section to know how to 
expose the CSM authentication and Authorization service features to web service consumers. Read the 
CSM Instance Level and Attribute Level Security section to know about the new feature introduced in CSM 
v4.0. For applications that use or want to use Acegi and leverage CSM Authentication and Authorization 
features, they should go through the CSM Acegi Adapter section to read how method level and method 
parameter level security is implemented and available out of the box. This section provides a workflow and 
steps necessary to integrate CSM Acegi adapter into existing or new applications using the Acegi 
framework. Next read the CSM caGrid Integration section know how to level CSM in the caGrid 
environment. 

 

 



4. CSM Overview 

4.1 Explanation 
 

The CSM provides application developers with powerful security tools in a flexible delivery.  CSM provides 
solutions for: 

1) Authentication - validating and verifying a user’s credentials to allow access to an application. CSM, 
working with credential providers (Lightweight Directory Access Protocol (LDAP), Relational Database 
Management Systems (RDBMS), etc.), confirms that a user exists and that the password is valid for that 
application. It also provides a lockout manager which locks out unauthorized users for a pre-configured 
amount of time after the (also pre-configured) number of allowed attempts is reached. 

2) Authorization - granting access to data, methods, and objects. CSM incorporates an Authorization 
schema and database so that users can only perform the operations or access the data to which they 
have access rights. 

3) Instance and Attribute level security - allows users to perform instance level filtering of data. The User 
Provision Tool (UPT) allows administrators to provision security filters for instances of domain classes and the 
API filters the results of the queries based on the access policy. The filtering of data is done at the database level 
with minimum overheads.  It also does attribute level filtering of data based on user permissions. 

4) User Provisioning - creating or modifying users and their associated access rights to your application 
and its data. CSM provides a web-based UPT that can easily be integrated with a single or multiple 
applications and authorization databases. The UPT provides functionality to create authorization data 
elements like Roles, Protection Elements, Users, etc., and also provides functionality to associate them 
with each other. The runtime API can then use this authorization data to authorize user actions. The 
UPT consists of two modes – Super Admin and Admin.  
a. Super Admin – accessed by the UPT’s overall administrator; used to register an application, assign 

administrators, and create or modify standard privileges. 
b. Admin – used by application administrators to modify authorization data, such as roles, users, 

protection elements, etc 
5) Audit Logging - In an effort to make CSM compliant with CRF 21/ part 11, CSM provides auditing and 

logging functionality. CSM uses NCICB’s Common Logging Module (CLM), which is another caCORE 
product, for the purpose of event logging as well as automated object state change logging into a 
persistent database. 

 



   

Figure 4.1 CSM Architecture   

CSM works with Java Authentication and Authorization Service (JAAS) to authenticate and authorize for 
the Application ABC. To authenticate, it references credential providers such as an LDAP or RDBMS. CSM 
can be configured to check multiple credential providers in a defined order. To authorize, CSM refers to 
the Authorization Schema. The Authorization Schema contains the Users, Roles, Protection Elements, etc., 
and their associations, so that the application knows whether or not to allow a user to access a particular 
object. The Authorization data can be stored on a variety of databases. It is created and modified by the 
Application Administrator using the web-based UPT. 

 

CSM uses NCICB’s Common Logging Module (CLM) to perform all the Audit and Logging. CSM logs all of the 
events and object state changes (security objects stated below in Table 4-1). These logs will be stored in a 
separate Common Logging Database for backup and review. Since logging can be configured using log4j, 
client applications have control over the logging of audit trails. More details regarding audit logging by 
CSM can be found in the Audit Logging section. 

4.2 Security Concepts 
 

 

In order to successfully integrate CSM with an application, it is important to understand the definitions for 
the security concepts defined in Table 4.1. Application Developers should understand these concepts and 
begin to understand how they apply to their particular application. 

Audit Messages 

Authorize 

Credential Providers 

 

 

 

 

 

LDAP 
Application server 

Application ABC 

Security module 
 

Common 

Authorization 

Schema 

Web server 

User 

Provisioning 

Web  

interface 

Application 

server 

User 

Provisioning 

application 

RDBMS 

 

JAAS 

 

A
u
th

e
n
tica

te
 

Authenticate 

 

Common 

Logging 

Database 

A
u
th

o
rize

 

 



Security Concept Definition 

Application Any software or set of software intended to achieve business or 
technical goals.  

User A User is someone that requires access to an application. Users can 
become part of a Group, and can have an associated Protection Group 
and Roles.  

Group A Group is a collection of application users. By combining users into a 
Group, it becomes easier to manage their collective roles and access 
rights in your application. 

Protection Element A Protection Element is any entity (typically data) that has controlled 
access. Examples include Social Security Number, City, and Salary. 
Protection Elements can also include operations, buttons, links, etc.
  

Protection Group A Protection Group is a collection of application Protection Elements. 
By combining Protection Elements into a Protection Group, it becomes 
easier to associate Users and Groups with rights to a particular data 
set. Examples include Address and Personal Information. 

Privilege A Privilege refers to any operation performed upon data.  CSM makes 
use of a standard set of privileges.  This will help standardize 
authorization to comply with JAAS and Authorization Policy and allow 
for adoption of technology such as SAML in the future. 

Role A Role is a collection of application Privileges. Examples include 
Record Admin and HR Manager. 

Table 4.1 Security concept definitions 

CSM users need to identify aspects of the application that should be labeled as Protection Elements. These 
elements are combined to Protection Groups, and then users are assigned Roles for that Protection Group. 

Shown in Table 4-1 are definitions of related security terms. 

Related Concept Definition 

Credential Provider 

 

 

 

A credential is a data or set of data which represents an individual unique to 
a given application (username, password, etc.). Credential providers are 
trusted organizations that create secure directories or databases that store 
credentials. In an authentication transaction, organizations check with the 
credential providers to verify entered information is valid. For example, the 
NCI network uses a credential provider to verify that a user name and 
password match and are valid before allowing access. 

JAAS 

Set of Java packages that enable services to authenticate and enforce access 
controls upon users. JAAS implements a Java version of the standard 
Pluggable Authentication Module framework, and supports user- based 
authorization. 

LDAP 
Credential providers may choose to store credential information using a 
directory based on LDAP.  An LDAP is simply a set of protocols for accessing 
information directories. Using LDAP, client programs can login to a server, 



Related Concept Definition 

access a directory, and verify credential entries.  

RDBMS 
Credential providers may choose to store credential information with a 
RDBMS. Unlike with LDAP, credential data is stored in the form of related 
tables.  

Login Module Responsible for authenticating users and for populating users and groups. A 
Login Module is a required component of an authentication provider, and 
can be a component of an identity assertion provider if you want to develop 
a separate LoginModule for perimeter authentication. LoginModules that 
are not used for perimeter authentication also verify the proof material 
submitted (for example, a user password). 

 Table 4-1 related security concept definitions 

 

4.3 Minimal System Requirements 
 

The following software is required and not included with CSM Software as listed in Table 4-3.  The 
software name, version, description, and URL hyperlinks are indicated in the table. 

Software Description Version URL 

JDK The J2SE Software Development Kit 
(SDK) supports creating J2SE 
applications  

1.5.0_11  
or higher 

http://java.sun.com/j2se/1.5.0/d
ownload.html   

Oracle Database Server† 9i http://www.oracle.com/technol
ogy/products/oracle9i/index.ht
ml  

MySQL 5.0.27 http://dev.mysql.com/download
s/mysql/5.0.html  

JBoss Application Server† 4.0.5 http://labs.jboss.com/jbossas/do
wnloads  

Tomcat 5.5.20 http://tomcat.apache.org/downl
oad-55.cgi  

Ant Build Tool 1.6.5  
or higher 

http://ant.apache.org/bindownl
oad.cgi  

Table 4-3 Minimal software requirements 

† Only one is required. 

5. CSM API User Guide 
 

http://java.sun.com/j2se/1.5.0/download.html
http://java.sun.com/j2se/1.5.0/download.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossas/downloads
http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/download-55.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi


5.1 Workflow 
 

This workflow section outlines the basic steps, both strategic and technical, for successful CSM 

integration.   

1) Decide which services you would like to integrate with an application.  If the application should 
authenticate users against an LDAP or other directory, select Authentication.  If granular data 
protection is important, also integrate with the authorization and provisioning services.  These 
options allow administrators to specify which users have access to particular components of the 
application.    

2) Read the CSM Guide for Application Developers (this document).  It provides an overview, workflow, 
and specific deployment and integration steps.  If using the provisioning service, also read the UPT 
User Guide available in this document 

3) Appoint a Security Schema Administrator who is familiar with the application and its user base.  
Using the User Provisioning Tool (UPT), these individuals input users, roles, etc., and ultimately gives 
privileges to users for certain application elements. 

4) Determine a security authorization strategy.  In this step, the Schema Administrator and the 
application team determines what data or links should be protected and what groups of people 
should have access to what. 

5) Decide upon a deployment approach.  As discussed in Section 6.7.2, authorization data can be stored 
on separate servers or as part of a common authorization schema.  Similarly, the UPT can be hosted 
locally or commonly.  Your decision may be made based on speed, security, user commonality, or 
other factors. 

6) Deploy Authentication, Authorization, and User Provisioning.  These steps are listed in detail in this 
document. 

7) Decide if you want to enable Audit Logging for these services or not. If yes then configure Audit 
Logging as explained later in the document 

8) Input the authorization data using the UPT. 

9) Integrate the application code using the integration steps for Authentication, Authorization, and User 
Provisioning. 

10) Test and refine CSM integration with your application.  Confirm that your authorization policy and 
implementation meets requirements. 

5.2 API Services 
The Security API’s consist of primary components – Authentication, Authorization and User Provisioning. 

The following corresponding managers control these components: 

 AuthenticationManager – for Authentication 

 AuthorizationManager – for Authorization and User Provisioning. 

AuthenticationManager 



The AuthenticationManager is an interface that authenticates a user against a credential provider. See 

Integrating with the CSM Authentication Service to learn how to integrate with the 

AuthenticationManager. Developers will work primarily with the login method. Detailed descriptions about 

each method’s functionality and its parameters are present in the CSM API Javadocs. 

AuthorizationManager 

The AuthorizationManager is an interface which provides run-time methods with the purpose of checking 
access permissions. See section Integrating with the CSM Authorization Service to learn how to integrate 
with the AuthorizationManager.  This manager also provides an interface where application developers 
can provision user access rights. The user provisioning functionality is primarily used internally by the User 
Provisioning Tool (UPT) hence there is no integration shown in this document. Detailed descriptions about 
each method’s functionality and its parameters are present in the CSM API Javadocs. 

5.3 Authentication 
 

The CSM Authentication Service provides a simple and comprehensive solution for user authentication. 

Developers can easily incorporate the service into their applications with simple configuration and coding 

changes to their applications. Authentication service allows authentication using LDAP and RDBMS 

credential providers. 

5.3.1 Integrating with the Authentication Service 

 

Importing the CSM Authentication Manager Class 

To use the CSM Authentication Service, add the highlighted import statements (last two) as shown in 
Figure 5.1 to the action classes that require authentication.   

 

Figure 5.1 Example ABC application - Import statements in an action class 

The class SecurityServiceProvider is the common interface class exposed by the CSM application. It 
contains methods to obtain the correct instance of the AuthenticationManager configured for that 
application. The client application abcapp then uses the AuthenticationManager to perform the actual 
authentication using the CSM. 

 

Using the CSM Authentication Manager Class 

import gov.nih.nci.abcapp.UserCredentials; 

import gov.nih.nci.abcapp.model.Form; 

import gov.nih.nci.abcapp.util.Constants; 

import gov.nih.nci.security.SecurityServiceProvider; 

import gov.nih.nci.security.AuthenticationManager; 

 

 



Figure 5.2 illustrates an example of how to use the CSM AuthenticationManager Service class in the ABC 
application. 

 

Figure 5.2 Example code to use the CSM AuthenticationManager Service class in the ABC application 

The client class obtains the default implementation of the AuthenticationManager by calling the static 
getAuthenticationManager method of the SecurityServiceProvider class by passing the application Context 
name – in this example “abcapp”. It then invokes the login method - passing the user’s ID and password. 
Note that the application name should match the name used in the configuration files for JAAS to work 
correctly. If the credentials provided are correct then a Boolean true is returned indicating that the user is 
authenticated. If there is an authentication error, a CSException is thrown with the appropriate error 
message embedded. 

5.3.2 Installation and Deployment configurations 
 

This section serves as a guide to help developers integrate applications with CSM’s Authentication Service. 

It outlines a step by step process that addresses what developers need to know in order to successfully 

integrate CSM’s Authentication, which includes: 

 CSM API jar placement 

 Database properties and configuration 

 LDAP properties and configuration 

 If audit logging, CLM API jar placement and configuration. 

UserCredentials credentials = new UserCredentials(); 

credentials.setPassword(Form.getPassword()); 

credentials.setUsername(Form.getUsername()); 

//Get the user credentials from the database and login 

try{ 

AuthenticationManager authenticationManager = 

SecurityServiceProvider.getAuthenticationManager(“abcapp”); 

boolean loginOK = 

authenticationManager.login(credentials.getUsername(), 

credentials.getPassword()); 

        if (loginOK)System.out.println("SUCESSFUL LOGIN"); 

        else System.out.println("ERROR IN LOGIN");  

   }catch (CSException cse){  

System.out.println("ERROR IN LOGIN");  

 } 

 

  

 



 

The CSM Authentication Service is available for any application and it can be used exclusively and is 

effective on its own. CSM’s Authentication Service does not need to replace existing authentication in an 

application. It can be used to supplement an application’s current authentication mechanism. Currently, 

only RDBMS-based and LDAP-based authenticated is supported. 

 

5.3.2.1 JAR Placement 
 

The CSM API’s Application is available as a JAR file, csmapi.jar, which needs to be placed in the class path 
of the application. Along with this JAR, there are many supporting JARs on which the CSM API depends. In 
case of web applications, these should be added in the folder <application-web-root>\WEB-INF\lib.  

5.3.2.2 Configuring Lock out in Authentication Manager 
 

If desired the application developers can use the optional user lockout feature provided by CSM’s default 

JAAS implementation of Authentication Manager. Three properties are available to configure the lockout 

feature and its use. For the client application to use the lockout manager all the three properties must 

have valid values or the lockout manager will be disabled. To be valid, these values must be non-zero 

positive integers. 

 lockout-time: This property specifies the time in milliseconds that the user will be locked out after 

the configured number of unsuccessful login attempts has been reached. 

 allowed-login-time:  This property specifies the time in milliseconds in which the configured 

number of unsuccessful login attempts must occur in order to lock the user out. 

 allowed-attempts: This property specifies the number of unsuccessful login attempts allowed 

before the user account is locked out. 

The default values for the lockout parameters are as given below 

 lockout-time = 1800000 milliseconds 

 allowed-login-time = 60000 milliseconds 

 allowed-attempts = 3 

Alternatively the user, in the client application class, can call and provide values for the lockout parameters 

by using the following method of SecurityServiceProvider Class. 

 

 

public static AuthenticationManager getAuthenticationManager(String applicationContextName, String 

lockoutTime, String allowedLoginTime, String allowedAttempts) throws CSException, CSConfigurationException 



5.3.2.3 RDBMS Credential Provider properties and Login Module configuration 
 

 In order to authenticate using the RDBMS database, developers must provide: 

 The details about the database 

 The actual query which will make the database calls 

 The CSM goal is to make authentication work with any compatible application or credential provider. 
Therefore we use the same Login Modules to perform authentication, and these must possess a standard 
set of properties.  

The properties needed to establish a connection to the database include: 

Driver - The database driver loaded in memory to perform database operations 

URL - The URL used to locate and connect to the database 

User - The user name used to connect to the database 

Password - The password used to connect to the database 

 

The following property provides the query to be used for the database to retrieve the user. 

Query - The query which will be fired against the RDBMS tables to verify the user id and the password 
passed for authentication 

 

The Configuring a Login Module in JAAS section on this page shows how to configure using JAAS or the 
JBoss login-config.xml file. 

Configuring a Login Module in JAAS 
 

Developers can configure a login module for each application by making an entry in the JAAS configuration 
file for that application name or context. 

The general format for making an entry into the configuration files is shown in Figure 5.3.2. 

 

Figure 5.3.2 configuring a login module 

For abcapp, which uses RDBMSLoginModule, the JAAS configuration file entry is shown in Figure 5.3.2. 

Application 1 { 

          ModuleClass  Flag    ModuleOptions; 

          ModuleClass  Flag    ModuleOptions; 

          ... 

      }; 

Application 2 { 

          ModuleClass  Flag    ModuleOptions; 

          ... 

      }; 

       

 



 

Figure 5.3.2 abcapp JAAS configuration file entry 

The configuration file entry contains the following: 

 The application is abcapp.  

 The ModuleClass is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule  

 The Required flag indicates that authentication using this credential source is a must for overall 
authentication to be successful.  

 The ModuleOptions are a set of parameters which are passed to the ModuleClass to perform its 
actions. 

 In the prototype, the database details as well as the query are passed as parameters: 
driver="oracle.jdbc.driver.OracleDriver" 

url="jdbc:oracle:thin:@oracle_db_server.nci.nih.gov:1521:abcappdb" 

 user="USERNAME" 

 passwd="PASSWORD" 

 query="SELECT * FROM users WHERE username=? and password=?" 

 

As shown in Figure 5.4, since ‘abcapp’ application has only one credential provider, only one 

corresponding entry was made in the configuration file. If the application uses multiple credential 

providers, then the LoginModule’s can be stacked. A single configuration file can contain entries for 

multiple applications. 

Configuring a Login Module in JBOSS 
 

If an application uses the JBoss Server, developers can perform login module configuration differently. 
Rather than creating a JAAS configuration file, simply use the JBoss login-config.xml file which is located at 
{jboss-home}\server\{server-name}\conf\login-config.xml. 

Shown in Figure 5.5 is the entry for the abcapp application: 

abcapp 

{ 

gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required  

driver="oracle.jdbc.driver.OracleDriver"  

url="jdbc:oracle:thin:@oracle_db_server:1521:abcappdb"  

user="USERNAME"  

passwd="PASSWORD"  

query="SELECT * FROM users WHERE username=? and password=?" 

} 



 

Figure 5.5 Example abcapp entry in login-config.xml 

As shown in this example: 

 The application-policy specifies the application for which we are defining the authentication policy 
which is abcapp. 

 The login-module is the LoginModule class which is to be used to perform the authentication task; 
in this case it is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule  

 The flag provided is “required”.  

 The module-options list down the parameters which are passed to the LoginModule to perform the 
authentication task. In this case they are: 

<module-option name="driver">oracle.jdbc.driver.OracleDriver</module-option> 

<module-option name="url">jdbc:oracle:thin:@cbiodb2-d.nci.nih.gov:1521:cbdev</module-option> 

<module-option name="user">USERNAME</module-option> 

<module-option name="passwd">PASSWORD</module-option> 

<module-option name="query">SELECT * FROM users WHERE username=?  

and password=?</module-option> 

 

Enabling Encryption in the RDBMS Login Module 
 

<application-policy name = "abcapp"> 

   <authentication> 

      <login-module code = "gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule" flag = "required" > 

          <module-option name="driver"> oracle.jdbc.driver.OracleDriver</module-option> 

          <module-option name="url">jdbc:oracle:thin:@oracle_db_server:1521:abcappdb</module-option> 

          <module-option name="user">USERNAME</module-option> 

          <module-option name="passwd">PASSWORD</module-option> 

          <module-option name="query">SELECT * FROM users WHERE username=? and password=?</module-option> 

     <module-option name="encryption-enable">YES</module-option> 

    </login-module> 

  </authentication> 

</application-policy> 



Since CSM v3.2 the RDBMS Login Module is now enhanced to support encrypted passwords. CSM 4.0 now 
by default encrypts passwords and stores them into the CSM database. Hence if an application is using the 
CSM’s User Table as credential provider then it needs to specify to the RDMBS Login Module to use 
encryption as shown Figure 5.5 in the JBoss login-config.xml entry where  

<module-option name="encryption-enable">YES</module-option> 

Encryption-enable option with a YES value uses the default CSM encryption to encrypt the user entered 

password before verifying it against the CSM’s User Table. 

 

5.3.2.4 LDAP Credential Provider properties and Login Module configuration 
 

The CSM default implementation also provides an LDAP-based authentication module to be used by the 
client applications. In order to authenticate using the LDAP, developers must provide:  

 The details about the LDAP server  

 The label for the user ID Common Name (CN)  or User Identification (UID) in the LDAP server 

 

The properties needed to establish a connection to the LDAP include: 

 ldapHost – The URL of the actual LDAP server. 

 ldapSearchableBase – The base of the LDAP tree from where the search should begin. 

 ldapUserIdLabel – The actual user id label used for the CN entry in LDAP. 

 

For LDAP Credential Providers that don’t allow anonymous binding to verify the user credentials, then in 
that case you will need to provide the common admin user name and password as additional properties to 
the LDAP Login module configuration. 

 ldapAdminUserName – The fully qualified name of the common admin user or the look up which 
would be used to bind to the LDAP server to be able to verify individual user ids and password 

 ldapAdminPassword – Password for the LDAP Admin User mentioned above. 

 

Configuring LDAP Login Module in JAAS 
 

For abcapp, which uses LDAPLoginModule, the JAAS config file entry is shown in Figure 5.6. 



 

Figure 5.6 Example JAAS configuration file entry 

As shown in Figure 5.6: 

 The application is abcapp.  

 The ModuleClass is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.  

 The Required flag indicates that authentication using this credential source is a must for overall 
authentication to be successful.  

 The LDAP details are passed: 

  ldapHost="ldaps://ncids2b.nci.nih.gov:636" 

  ldapSearchableBase= “ou=nci,o=nih” 

ldapUserIdLabel=”cn” 

 

Since abcapp has only one credential provider, only one corresponding entry was made in the 
configuration file. If the application uses multiple credential providers then the LoginModules can be 
stacked. A single configuration file can contain entries for multiple applications. 

Configuring LDAP Login Module in JBoss 
If an application uses the JBoss Server, developers can perform login module configuration differently. 
Rather than creating a JAAS configuration file, simply use the JBoss login-config.xml file which is located at 
{jboss-home}\server\{server-name}\conf\login-config.xml. 

Shown in Figure 5.7 is the entry for the abcapp application: 

abcapp 

{ 

gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required  

ldapHost= “ldaps://ncids2b.nci.nih.gov:636” 

ldapSearchableBase= “ou=nci,o=nih” 

ldapUserIdLabel=”cn”; 

}; 

 



 

Figure 5.7 Example LDAP JBoss configuration file 

As shown in Figure 5.7: 

 The application-policy is the application for which we are defining the authentication policy – in this 
case abcapp.  

 The login-module is the LoginModule class which is to be used to perform the authentication task; 
in this case it is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule. 

 The flag provided is “required”.  

 The module-options list down the parameters which are passed to the LoginModule to perform the 
authentication task. In this case they are: 

<module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option> 

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

<module-option name="ldapUserIdLabel">cn</module-option> 

 

Configuring LDAP Login Module using Anonymous Bind 
If an application uses an LDAP Server that doesn’t support anonymous binds to perform a lookup, in that 
case you need to specify an admin (or a lookup user) id and a password to be able to bind to the LDAP 
server to verify user name and password. In order to do so additional parameters needs to be passed to 
the LDAP LoginModule entry in the JAAS Login Configuration file. Following is an entry for the same using 
JBoss’s Login-Config.xml file 

Shown in Figure 5.7 is the entry for the abcapp application: 

<application-policy name = "abcapp"> 

  <authentication> 

    <login-module code = "gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag = "required" > 

      <module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option> 

      <module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

      <module-option name="ldapUserIdLabel">cn</module-option> 

    </login-module> 

  </authentication> 

</application-policy> 



 

Figure 5.8 Example LDAP JBoss configuration file for LDAP Servers requiring Binding 

As shown in Figure 5.7: 

 The application-policy is the application for which we are defining the authentication policy – in this 
case abcapp.  

 The login-module is the LoginModule class which is to be used to perform the authentication task; 
in this case it is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule. 

 The flag provided is “required”.  

 The module-options list down the parameters which are passed to the LoginModule to perform the 
authentication task. In this case they are: 

<module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option> 

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

<module-option name="ldapUserIdLabel">cn</module-option> 

      <module-option name="ldapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov</module-option> 

      <module-option name="ldapAdminPassword">PASSWORD</module-option> 

 

 

5.3.2.5 Activating CLM Audit Logging 

 

In order to activate the CLM’s Audit Logging capabilities for Authorization, the user needs to follow the 
steps to deploy Audit Logging service as mentioned in the Audit Logging section below 

<application-policy name = "OpenLDAP"> 

  <authentication> 

    <login-module code = "gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag = "required" > 

      <module-option name="ldapHost">ldap://ncicbds-dev.nci.nih.gov:389</module-option> 

      <module-option name="ldapSearchableBase">ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov</module-option> 

      <module-option name="ldapUserIdLabel">uid</module-option> 

      <module-option name="ldapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov</module-

option> 

      <module-option name="ldapAdminPassword">PASSWORD</module-option> 

    </login-module> 

  </authentication> 

</application-policy> 



 

5.4 Authorization 
 

The security APIs have been provided to facilitate the security needs at run time. These APIs can be used 

programmatically. They have been written using Java, so it is assumed that developers know the Java 

language.   

 

5.4.1 Integrating CSM API’s Overview 

 

This section provides instruction for integrating the CSM APIs with JBoss. The integration is flexible enough 
to meet the needs for several scenarios depending on the number of applications hosted on JBoss and 
whether or not a common schema is used. Following are the scenarios:     

1. JBOSS is hosting a number of applications 
a. use common schema 
b. use separate schema 

2. JBOSS is hosting only one application 
a. use common schema 
b. use separate schema 

 

5.4.1.1 Integrating with the CSM Authorization Service 
 

Importing and Using the CSM Authorization Manager Class 

To use the CSM Service, add the highlighted import statements (last two) as shown in Figure 5.9 to the 
action classes that require authorization. 

 

Figure 5.9 Example ABC application - Import statements in an action class 

import gov.nih.nci.abcapp.UserCredentials; 

import gov.nih.nci.abcapp.model.Form; 

import gov.nih.nci.abcapp.util.Constants; 

import gov.nih.nci.security.SecurityServiceProvider; 

import gov.nih.nci.security.AuthorizationManager; 

 

 



The class SecurityServiceProvider is the common interface class exposed by the CSM application. It 
contains methods to obtain the correct instance of the AuthorizationManager configured for that 
application. The client application abcapp then uses the AuthorizationManager to perform the actual 
authentication using the CSM. 

Figure 5.10 illustrates an example of how to use the CSMService class in the ABC Application. 

 

Figure 5.10 Example code to use the CSMService class in the ABC application 

The client class obtains the default implementation of the AuthorizationManager by calling the static 
getAuthorizationManager method of the SecurityServiceProvider class by passing the application Context 
name – in this example “abcapp”. It then invokes the checkPermission method – passing the user’s ID, the 
resources which it is trying to access and the operation which it wants to perform.  Note that the 
application name should match the name used in the configuration files as well as configured in the 
databases for authorization to work correctly. If the user has the required access permission, then a 
Boolean true is returned indicating that the user is authenticated. In case of any authorization error, a 
CSException is thrown with the appropriate error message embedded. 

5.4.2 Software Products and Scripts 
Table 5.11 displays descriptions of software products used for authorization. 

 Software Product Description 

JBoss Server The JBoss/Server is the leading open source, standards-

compliant, J2EE-based application server implemented in 100% 

Pure Java. A majority of caCORE applications use this server to 

host their applications. 

MySQL Database MySQL is an open source database. Its speed, scalability and 

reliability make it a popular choice for Web developers. CSM 

recommends storing authorization data in a MySQL database 

because it is a light database, easy to manage and maintain. 

Oracle Database Oracle‘s relational database was the first to support the SQL 

try { 

AuthorizationManager authorizationManager = 

SecurityServiceProvider.getAuthorizationManager(“abcapp”); 

boolean hasPermission = authorizationManager.checkPermission(“user name” , “resource name”, 

“operation” ); 

if (hasPermission){    System.out.println(“PERMISSION GRANTED."); 

}else{   System.out.println(“PERMISSION DENIED ");  } 

}catch ( CSException cse){  

System.out.println("ERROR IN AUTHORIZATION ");   

   } 

 

  

 



 

 

Table 

5.11 

Authorization software products 

 

File Description 

hibernate.cfg.xml  The sample XML file which contains the hibernate-

mapping and the database connection details. 

AuthSchemaMySQL.sql  

OR 

AuthSchemaOracle.sql  

OR  

AuthSchemaPostgres.sql 

This Structured Query Language (SQL) script is 

used to create an instance of the Authorization 

database schema which will be used for the purpose 

of authorization.  In 3.0.1 and subsequent releases, 

this script populates the database with CSM 

Standard Privileges that can be used to authorize 

users.  The same script can be used to create 

instances of authorization schema for a variety of 

applications. 

DataPrimingMySQL.sql  

OR 

DataPrimingOracle.sql 

OR  

DataPrimingPostgres.sql 

This SQL script is used for priming data in the 

authorization schema. Note that if the authorization 

database is going to host the UPT also then you 

need to use UPT Data Priming Scripts instead and 

add the application through the UPT 

mysql-ds.xml 

OR 

oracle-ds.xml 

OR 

Postgres-ds.xml 

This file contains information for creating a 

datasource. One entry is required for each database 

connection.  Place this file in the JBoss deploy 

directory. 

Table 5.12 Authorization configuration and SQL files 

5.4.3 Installation and Deployment configurations 
 

This section serves as a guide to help developers integrate applications with CSM’s Authorization Service. It 

outlines a step by step process that addresses what developers need to know in order to successfully 

integrate CSM’s Authorization, which includes: 

 CSM API jar placement 

 Database properties and configuration 

 If audit logging, CLM API jar placement and configuration.  

language, which has since become the industry standard. It is a 

proprietary database which requires licenses. 

Hibernate Hibernate is an object/relational persistence and query service 

for Java. CSM requires developers to modify a provided 

Hibernate configuration file (hibernate.cfg.xml) in order 

to connect to the appropriate application authorization schema. 

1.  



5.4.4.1 Jar Placement 
The CSM Application is available as a JAR which needs to be placed in the classpath of the application. Along with 

this JAR, there are many supporting JARs on which the CSM API depends. These should be added in the folder 

<application-web-root>\WEB-INF\lib. 

5.4.4.2 Database Properties and configuration 
 

Create and Prime Database 

Note: When deploying Authorization, application developers may want to make use of a previously-
installed common Authorization Schema. In this case, a database already exists, so skip this step. Follow 
the steps below to install a new Authorization Schema.  Note that the Authorization Schema used by the 
run-time API and the UPT has to be the same. 

1. Log into the database using an account id which has permission to create new databases. Since CSM 
caCORE 3.0.1 release you can now use either MySQL or Oracle as your database of choice to host the 
authorization data. Based on the database you have selected, you must follow the same step during 
the entire installation 

2. In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script, replace the “<<database_name>>” tag 
with the name of the authorization schema (e.g. “caArray”). 

3. Run this script on the database prompt. This should create a database with the given name.  The 
database will include CSM Standard Privileges. 

4. Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the 
“<<application_context_name>>” with the name of application. This is the key to derive security for 
the application. This will be called application context name. 

5. Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the 
“<<super_admin_login_id>>”, “<<super_admin_first_name>>” and “<<super_admin_last_name>>” 
with the super admin user’s login id, first name and the password. NOTE: that the default password is 
always “changeme” and this should used for logging into the application’s UPT for the first time. It 
should be changed immediately 

6. Run this script on the database prompt. This should populate the database with the initial data. Verify 
this by querying the application table. It should include one record only. 

 

Configure Datasource 
 

1. Modify the provided mysql-ds.xml or oracle-ds.xml file which contains information for 
creating a datasource. One entry is required for each database connection.  Edit this file to replace: 

a. The <<application_context_name>> tag with the name of the authorization schema (for 
example, “csmupt”). 

b. The <<database_user_id>> with the user id and <<database_user_password>> with 
the password of the user account, which will be used to access the Authorization Schema created 
in Step 1 above. 

c. The <<database_url>> with the URL needed to access the Authorization Schema residing on 
the database server. 



Shown in Figure 5.11 is an example of the mysql-ds.xml file. 

 

Figure 5.11 Example mysql-ds.xml file 

2. Place the mysql-ds.xml or oracle-ds.xml file in the JBoss deploy directory.   

 

5.4.4.3 Activate CLM Logging 
 

In order to activate the CLM’s Audit Logging capabilities for Authorization, the user needs to follow the 

steps to deploy Audit Logging service as mentioned in the Audit Logging section. 

 

5.5 User Provisioning Tool 
 

CSM User Provisioning Tool is a web application used to provision an application’s authorization data. The 
UPT provides functionality to create authorization data elements like Roles, Protection Elements, Users, 
etc., and also provides functionality to associate them with each other. The runtime API can then use this 
authorization data to authorize user actions. 

<datasources> 

  <local-tx-datasource> 

    <jndi-name>csmupt</jndi-name> 

    <connection-url>jdbc:mysql://mysql_db:3306/csmupt</connection-url> 

    <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource> 

  <local-tx-datasource> 

    <jndi-name>security</jndi-name> 

    <connection-url>jdbc:mysql://mysql_db:3306/csd</connection-url> 

    <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource> 

</datasources> 



See the User Provisioning Tool User Guide section for details on usage of UPT. The UPT User Guide section 
also explains how to deploy the UPT from start to finish – from uploading the Web Application Archive 
(WAR) and editing configuration files, to synching the UPT with the application. 

5.6 Audit Logging 

5.6.1 Introduction 
 

In an effort to make CSM compliant with CRF 21/ part 11, CSM will provide auditing and logging 
functionality. Currently CSM is using log4j for logging application logs. However, CRF21/ part 11 requires 
that certain messages are logged in a specific way.  For example, all objects should be logged in a manner 
that allows them to be audited at later stage. There are two types of audit logging: Event logging and 
Object state logging. Audit logging capability will be provided through the Common Logging API that is 
available from clm.jar. Audit logging is configurable by the client application developer via an application 
property configuration file. By placing the clm.jar along with the application property configuration file in 
the same class path as the csmapi.jar file, the client application will be able to utilize the inbuilt audit 
logging functionality. The logging results will be saved into a database or a flat text file depending on the 
configuration. In addition, the logging can be enabled and disable for any fully qualified class name. 

5.6.2 Purpose 
 

This section serves as a guide to help developers integrate Audit Logging for the CSM. This section outlines 
a step-by-step process that addresses what developers need to know in order to successfully integrate 
Common Logging Module (CLM), including:  

 Jar placement  

 Configuring the JDBC Appender configuration file or the regular log4j configuration file 

5.6.3 Jar Placement 
 

The Audit Logging Application is available as a JAR, called clm.jar.  This jar along with the csmapi.jar needs 
to be placed in the classpath of the application. If the client application is integrating the CSM API’s as part 
of a web application on JBoss then clmwebapp.jar should be placed in the lib directory of the WEB-INF 
folder and the clm.jar should be placed in the common lib directory of JBoss. 

5.6.4  Enabling CLM APIs in Integration with CSM APIs 
 

The various services exposed by CSM have been enabled for the purpose of Audit and Logging using the 
CLM. If configured properly, client applications using the CSM APIs can enable the internal CLM based 
Audit and Logging capabilities.  
 



The CLM APIs provide the following major components of the Audit and Logging capabilities provided by 
CSM. 
 

Event Logging 
 
Both the Authentication and Authorization service have been modified to enable the logging of every 
event that the user performs. For Authentication Services, the CSM APIs log the login and logout events of 
the user. In addition, when a user lockout event occurs, a log is generated that records the username that 
was locked out. For Authorization Service the CSM APIs track all create, update and delete operations that 
the client application invokes. The ‘read’ operations are not logged because they are not needed for Audit 
and Logging. 
 
 The UPT can perform all of the audit and logging services because it uses the CSM APIs (which use CLM 
APIs) to perform operations on the database. 
 
Since the CLM APIs are based on log4j, the following logger names are used in the CSM APIs to perform the 
event logging. 
 
Authentication Event Logger Name:  

CSM.Audit.Logging.Event.Authentication 
Authorization Event Logger Name: 

CSM.Audit.Logging.Event.Authorization 
 
The log4j log level used for all the event logs is INFO 
 
In order to enable these loggers, they should be configured in the log4j.xml config file of Jboss as shown in 
JDBC Appender section below. 
 

Object State Logging 
 
The Authorization Service of the CSM is enabled to log the object state changes using the automated 
object state logger available through CLM APIs. This logger tracks all the object state changes that are 
made using the CSM APIs. It also uses the log4j based CLM APIs and the following Logger Name: 
 
Authorization Object State Logger Name:  

CSM.Audit.Logging.ObjectState.Authorization 
 
The log4j log level used for all the object state logs is INFO 
 
In order to enable object state logging for CSM APIs the above mentioned logger should be configured in 
the log4j.xml config file of JBoss as shown in JDBC Appender section below. 
 

User Information 
 
In order to track which user is performing the specific operation for the purpose of Audit Logging, CSM 
needs to know user information like user id and session id and also the organization to which the user 
belongs. Since these values are only available with the client application, they need to be passed to the 
CSM APIs. To accomplish this, the client application must use the utility class “UserInfoHelper” provided by 



the underlying CLM APIs. This information needs to be set before calling any of the create, update or 
delete functions of the CSM APIs. 
 

Common Logging Database 
 
This is the persistence storage that the JDBC appender uses to store the Audit Logs. The Log Locator 
application of CLM connects to this database to allow the user to browse the logs. 
 

JDBC Appender 
 
To persist these Audit logs the CLM provides an asynchronous JDBC Appender. Thus, an application that 
wants to enable the audit logging for CSM APIs should also configure this Appender. A sample log4j entry is 
show below.  

 

<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE log4j:configuration SYSTEM 

".\log4j.dtd"> 

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'> 

<appender name="CLM_APPENDER" 

class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">  

 <param name="application" value="csm" />    

 <param name="maxBufferSize" value="1" />    

 <param name="dbDriverClass" value="org.gjt.mm.mysql.Driver" />

 <param name="dbUrl" 

value="jdbc:mysql://<<SERVER_NAME>>:<<PORT>>/<<CLM_SCHEMA_NAME>>" />

 <param name="dbUser" value="<<DB_USER>>" />   

 <param name="dbPwd" value="<<PASSWORD>>" />   

 <param name="useFilter" value="true" />    

 <layout class="org.apache.log4j.PatternLayout">   

 <param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p 

%c{1}.%M() %x - %m%n" />        

 </layout> 

</appender> 

<category name="CSM.Audit.Logging.Event.Authentication">  

 <level value="info" />                      

 <appender-ref ref="CLM_APPENDER" />          

 </category> 

<category name="CSM.Audit.Logging.Event.Authorization">  

 <level value="info" />      

 <appender-ref ref="CLM_APPENDER" />    

 </category> 

<category name="CSM.Audit.Logging.ObjectState.Authorization">  

 <level value="info" />      

 <appender-ref ref="CLM_APPENDER" /> 

</category> 

</log4j:configuration> 



Figure 5.6.4-1 Example log4j.xml file 

NOTE: CSM is capable of performing both event and object state audit logging only for the operations and 
data pertaining to CSM. In order to CLM features without using CSM, the client application can separately 
download and install CLM. In this case CLM can be used (even without using CSM) to provide event logging 
and automated object state logging capabilities using the special appender and schema. Also the log 
locator tool can be used for the purpose of viewing the logs.   

5.6.5 Deployment Steps 

In order for a client application to enabling the Audit Logging capabilities provided by CSM (via CLM), the 

following steps must be performed: 

 

       Step 1: Create and Prime MySQL Logging Database 

1. A database has to be created which will persist the audit logs that are generated as a basis of usage of 
the CSM APIs 

2. Refer to the CLM’s guide for application developers for creating and priming the database for storing 
the audit logs. 

 
       Step 2: Configure the log4j.xml file for JBoss 

1. Use the sample log4j file provided in the CSM’s release to configure the log4j.xml file for JBoss. (see 
figure 4-9 above) 

2. Replace the <<SERVER_NAME>>, <<PORT>> and the <<CLM_SCHEMA_NAME>> with corresponding 
values where the schema created in Step 1 is hosted. 

3. Replace the values for the <<DB_USER>> with the user name that has access on the schema. Also 
replace the <<PASSWORD>> with the corresponding password for the user. 

4. Based on whether the application wants to enable the event audit logging for Authentication & 
Authorization or object state audit logging for the Authorization; the corresponding logger needs to be 
configured. Note: The names of loggers must not differ from the sample. 

5. Incase of UPT the same log4j config file can be used. 

       Step 3: View the Logs 

1. CLM provides a web-based locator tool that can be used to browse audit logs. 

2. The configuration steps for setting up the browser are mentioned in the CLM’s guide for application 
developers. 



  

6. User Provisioning Tool Users Guide 

6.1 Introduction  
The User Provisioning Tool (UPT) provides a Graphical User Interface to create authorization data elements 
like Roles, Protection Elements, Users, etc., and also provides functionality to associate them with each 
other. The runtime API can then use this authorization data to authorize user actions. 

 

This guide’s intended audience is all users of the UPT, including Super Administrators who may add 
applications and associated administrators, and Administrators who will perform provisioning for a 
particular application.  This guide provides an overview of the application, outlines a suggested workflow, 
and explains how to perform all UPT operations. 

6.2 Workflow 
The UPT includes two modes – Super Admin and Admin.  The Super Admin operations are typically 
performed first, as they register the application and application administrators.  The primary mode 
operations, including authorization user provisioning, occur next.  

Super Admin 

When first deploying the UPT for a particular application, the developer registers the application in the 
Super Admin mode.  (For details, refer to the CSM Guide for Application Developers.  Deployment details 
can be found in the Provisioning subsection of the Deployment Models section.)   

Once the application is registered, the Super Admin can add users who will serve as application 
administrators.  The Super Admin can also register additional applications as they become available.  This 
document details these steps in the Super Admin Workflow section. 

Admin 

The primary (Admin) mode is for performing user provisioning for a particular application.  The Admin 
mode follows a simple workflow of creating elements, assigning them, and then associating them.  This 
document details these steps in the Admin Workflow section. 

Login 

The Login page includes summary text, What’s New, Did You Know, and most importantly the Login 
section itself: Login ID, Password, and Application Name.  For a majority of UPT implementations, the 
NCICB LDAP serves as the authentication mechanism.  Therefore the user’s Login ID will be the same as the 
user’s NCICB user name (in Figure 6.1 and Figure 6.2, user Eric Copen’s NCICB user name is copene).  
Similarly, the Password will equal the NCICB password. The rules from the authentication system are 
applied to the user name and password.  

 

If logging on as Super Admin, enter the Application Name csmupt (see Figure 6.1).  If logging in as an 
Admin, enter the appropriate application name. For Example Security is used in Figure 6.2. 



 

 

Figure 6.1 Login as a Super Admin 

 

Figure 6.2 Login as an Admin 

 

Since UPT uses CSM’s Authentication Manager, it can be configured to lock a user out if they try to make 
an unauthorized entry into the UPT. If configured appropriately, UPT can lock the user out after a pre-
configured number of unsuccessful attempts have been reached in the allowed login time frame. Once 
locked out, the user can log in only after the configured amount of lockout time has elapsed. This provides 
security from hacking attempts to break into the UPT. 

 

6.3 Common Basic Functions 
 

Within the UPT, there are several common operations that are repeated for most elements.  These 
operations include Create New, Search and Update, Delete, and Assign/Associate.  This section describes 
how these operations are performed.. 

Create New 

When creating a new element follow the steps outlined below.  The same basic steps can be followed to 
create any element; in this example a User is created. 

 

Step 1: On the element Home page select Create a New…(Figure 6.3)  

 

Figure 6.3 New and Existing User options 

 



Step 2: Enter details (Figure 6.4.4): 

 

Figure 6.4 Entering new user details 

 

Step 3: Select Add to save the new element (in this case User) to the database.  This save occurs 
immediately.  Back acts exactly like the back button in a browser – returning the user to the home page.  
Reset clears the data from the entire form.  Remember that no data is saved until the Add button is 
selected. 

Step 4: Upon a successful save, the system displays Add Successful just below the menu and before the 
text. In addition, a new set of buttons appears below the details table in Admin mode (Figure 6.5). 

 

 

Figure 6.5 A new set of buttons appear below the menu after you have successfully added a new user. Note: the additional 
set of buttons is visible in Admin mode only.The Super Admin mode shows limited buttons. 

Example Error Messages:  

The User Interface performs basic data validation, including field lengths and formats.  Figure6.6 is an 
example of a message displayed when a user enters an improperly formatted email address: 

 

Figure6.6 Error message after entering incorrect email address 

The system displays the message in Figure 6.7 (or similar) if a user tries to add an entry (e.g. smithj) when 
it already exists in the system: 

 

 

 

Figure 6.7 Error message after entering a user already in the system 

 

Search for and Select Existing Elements 

When searching for and selecting an element follow the steps outlined below.  The same basic steps can 
be followed for any element; in this example, a Role is searched for and selected. 



 

Step 1: On the element Home page select Select an Existing…(Figure ).  

 

Figure 6.8 Selecting an existing Role 

  

Step 2: Enter search criteria.  Use the * character to perform wildcard searches (see Figure ).  For example, 
searching for Role* returns Role_name_1, Role_name_2, or any other role beginning with role.  A search 
of *1 returns anything ending with 1 – Role_name_1, Role_name_101, Role_name_51, etc.  Select Search 
for results.  Back returns the user to the home page.  Reset clears the data. 

 

Figure 6.9 Entering search criteria for Role 

 

Step 3: The system returns a list of matching roles. The results are sorted alphabetically for all search 
result screens. (6.10):  

 

Figure 6.10 Role search results 

 

Step 4: Select the desired element, in this case Role_name_1, by clicking on the radio button in the Select 
column (Figure ).  You can select one element at a time to view. 

 

Figure 6.11 Example of selecting an element with a radio button 

  

Step 5: Click on the View Details button below the Search Results table: 

The system then displays this element’s details.  (See the following section, Update.) 



Example Error Messages: If the search criteria results in no matches, the system displays an error 
indicating there are no matches in a search.  Modify the search criteria and repeat until the intended 
results appear.  

Update 

When updating an element follow these steps.  The same basic steps can be followed for any element; in 
this example, a Protection Element is updated. 

Step 1: Reach the details screen.  There are two ways to reach the details screen – either create a new 
element (See Create New) or search for and select an existing element (See Search for and Select Existing 
Elements).  The details screen (Figures 6.10 and 6.11) displays information such as name and description: 

 

Figure 6.12 Protection element details 

  

Step 2: Simply replace existing text, and select Update. 

 

Figure 6.13 Entering text for a Protection Element 

  

Step 3: Upon a successful update, the system displays Update Successful just below the menu and before 
the text. 

Example Error Messages: The User Interface performs basic data validation, including field lengths and 
formats.  The systems also check for duplicates; it prevents changing the element name to one that 
already exists.  See the Example Error Messages section for more detail.   

 

Delete  

When deleting an element, follow these steps.  The same basic steps can be followed for any element; in 
this example, a Group is deleted. 

 

Step 1: Reach the Group Details screen.  From the home page, either create a new Group (see Create New) 
or search for and select an existing Group (see Search for and Select Existing Elements).  The element’s 
Details screen displays a button containing the text Delete. 

 

Step 2: Click on the button titled Delete. 



 

Step 3: A pop-up window asks Are you sure you want to delete the record?.  Click Okay to confirm.  
Clicking Cancel negates the operation and returns the display to the Details screen. 

 

Step 4: Upon confirming the deletion, the system returns you to the Group home page and displays in blue 
text the words, Delete Successful.   

6.4 Assignments and Associations  
 

The elements Role, Protection Group, and Group are simply collections of other elements – Privileges, 
Protection Elements, and Users respectively.  Provisioning includes assigning elements to elements or 
removing elements from an element (we call this deassign).  For example, assigning Users to Groups 
greatly improves the ease by which one can provision access rights.  An Admin can instantly assign a role 
and protection group to an entire group of people instead of repeating the same assignment for each 
individual.  

Assign or Deassign Privileges, Roles, ProtectionGroups, Groups: 

 

Step 1: Navigate to the Association screen.  From the element home page, either create a new element 
(see Create New) or search for and select an existing element (see Search for and Select Existing Elements).  
The element’s Details screen displays a button containing the text Associated, Assign, or something similar 
depending on the element type. 

Step 2: With this UI implementation, associations can be established or removed by simply selecting 
elements and moving them from one box to another.  The box on the top lists the Available Groups 
(unassigned) and the box below lists the Groups assigned to the User – Group_Northeast, 
Group_ProjectLead, and Group_Research_A.  Simply highlight a Group and select Assign to move it to the 
Assigned Groups box.  Select Deassign to move it back to the Available Groups box.   

 

There are multiple ways to highlight the elements within the box: 

1. Select one by clicking on the user name entry. 
2. Select multiple users entries by holding down control while selecting and/or deselecting. 
3. Select multiple by holding down the shift button while selecting the first and then last of a 

collection.  
 



 

Figure 6.14 Available and Assigned Groups lists 

 

Step 3: Save the association by clicking Update Association.  No association is saved until this button is 
selected. 

 

Assign or Deassign Users and Protection Elements  

 

Assign or Deassign Users and ProtectionElements: 

 

Step 1: Navigate to the Association screen.  From the element home page, either create a new element 
(see Create New) or search for and select an existing element (see Search for and Select Existing 
Elements).  The element’s Details screen displays a button containing the text Associated, Assign, or 
something similar depending on the element type. 

Step 2: With this UI implementation, associations can be established by selecting ‘Assign’.   The box lists 
the Assigned ProtectionElements.  Simply select Deassign to deassign and remove a PE from the Assigned 
PEs box.   

 

There are multiple ways to highlight the elements within the box: 

1. Select one by clicking on the user name entry. 
2. Select multiple user’s entries by holding down control while selecting and/or deselecting. 
3. Select multiple by holding down the shift button while selecting the first and then last of a 

collection. 



 

 

Figure 6.15 Assigned PEs list 

On selecting the ‘Assign PE’ button, the popup search criteria screen is displayed. 

 

 

Figure 6.16 Protection Element search criteria popup screen. 

On clicking the search button the sorted search results for the given search criteria is displayed. One or 
more checkboxes can be selected for assignment by checking and clicking the ‘Assign PE’. The selected 
PE’s will be added to the Assigned PE’s box.  

.  

Figure 6.17 Protection Element search result popup screen. 

 



 

Figure 6.18 Assigned PEs list. 

 

Step 3: Save the association by clicking Update Association.  No association is saved until this button is 
selected. 

 

6.5 Super Admin Mode 
 

6.5.1 Overview 
 

The Super Admin Mode includes operations pertaining to Users (Application Administrators), Applications, 
and Privileges.  Super Admins. may add, remove, or modify Application details. They may also assign users 
to these Applications, modify user details, and remove users.  Lastly, they may modify existing CSM 
Standard Privileges or create new application-specific privileges.    

 

6.5.2 Workflow 
 

The CSM team designed the UPT as a flexible tool with a flexible workflow.  Any operation can be 
completed quickly, however, at first it may be difficult to know where to start.  The following is a 
suggested workflow for getting started in the Super Admin Mode:  

 

1. Application – when first deploying the UPT for a particular application, the developer registers the 
application in the Application section.  (See the CSM Guide for Application Developers for details.)  

2. Application – add and update Application details.  

3. User – add and update users who will serve as Application Administrators.   

4. Application – assign users to applications. 

5. Privilege – if necessary, add or edit CSM Standard Privileges. 

 



6.5.3 Navigation 
 

Use the gray menu to navigate through the Super Admin section.  From the Home page, the menu looks 
like this: 

 

Figure 6. 2 Home Page menu options 

 

The menu option with a blue background designates the current location.  Roll over the other choices until 
they turn blue, and then click to navigate to that section.  The Log Out selection returns the user to the 
Login page. 

Application 

In the Application section, a Super Admin can add an application to the UPT and add or modify details.  
Here are the available operations to perform: 

 

1. Create a New Application  
a. Go the Application home page. 
b. Select Create a New Application. 
c. Enter data into the Application Details form. 

1. Application Name – uniquely identifies the Application, required field.  
2. Application Description – a brief summary describing the Application.  
3. Declarative Flag – indicates whether application uses Declarative security. 
4. Application Active Flag – indicates if the Application is currently active. 
5. Database URL – The JDBC Database URL for the given application. 
6. Database User Name – The Username for the application database. 
7. Database Password – The Password for the application database 
8. Database Dialect – The Dialect for the application database. 
9. Database Driver –The Driver for the application database 
 

Please note: the Database fields should either be completed together or left blank 

completely. They are all required fields if at least one of them is populated. 

 

d. Select Add button. 
 

2. Select an Existing Application and Update 
a. Go to the Application home page. 
b. Click on Select an Existing Application. 
c. Enter data into the Application Search Criteria form. 

1. Application Name – uniquely identifies the Application.  
d. Click on the radio button corresponding with the intended Application name. 



e. Select View Details. 
f. Enter data into the Application Details form. 

1. Application Name – uniquely identifies the Application, required field.  
2. Application Description – a brief summary describing the Application.  
3. Declarative Flag – indicates whether application uses Declarative security. 
4. Application Active Flag – indicates if the Application is currently active. 
5. Database URL – The JDBC Database URL for the given application. 
6. Database User Name – The Username for the application database. 
7. Database Password – The Password for the application database 
8. Database Dialect – The Dialect for the application database. 
9. Database Driver –The Driver for the application database 

 

Please note: the Database fields should either be completed together or left blank 

completely. They are all required fields if at least one of them is populated. 

 

 

g. Select Update button. 
 

3. Delete an Existing Application 
a. Reach the Application Details form by either creating a new Application or Selecting an 

Existing Application. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete the Application. 

 

4. Application and Admin Association 
a. Reach the Application Details form by either creating a new Application or Selecting an 

Existing Application. 
b. Select Associated Admins. 

1. Associate Users (See Assignments and Associations for details). 
c. Click on the Assign and Deassign buttons until the proper association is displayed.  
d. Save the association by clicking on Update Association.  No association is saved until this 

button is selected. 

User 

In this section Users can be assigned as UPT administrators for their particular application(s). They will 
have the right to create and modify Roles, Groups, etc. In this section you may create new Users or modify 
exiting User details.  Here are the available operations: 

 

1. Create a New User  
a. Go to the User home page. 
b. Select Create a New User. 
c. Enter data into the User Details form. 



 Name – uniquely identifies the User, required field.  

 First Name and Last Name – attributes that help identify the User.  

 Organization – Organization for which the User works.  An example is the National 
Cancer Institute (NCI). 

 Department – Department for which the User works.  An example is caArray. 

 Title – Title for User.  

 Phone Number – provides contact information, typically the direct business phone 
number for the User.  The phone number field accepts the following formats: 
0123456789, 012-345-6789, (012)3456789, (012)345-6789, (012)-345-6789 

 Email Id – provides the email contact details for the User.  An email ID must contain an 
‘@’ sign.  

 Password– an optional field used if the schema for Authorization will also be used for 
Authentication.  The only characters visible within this field are stars ‘*’ so the password 
is not visible on the screen. 

 Confirm Password – a copy of the password field.  It ensures the intended password 
was entered correctly.  This field must match the password field exactly. 

 User Start Date and User End Date – Indicates user start date and end date.. 
d. Select Add button. 

 

2. Select an Existing User and Update 
a. Go to the User home page. 
b. Click Select an Existing User. 
c. Enter data into the User Search Criteria form. 

 User Name – uniquely identifies the User. 
d. Click on the radio button corresponding with the intended User name. 
e. Select View Details. 
f. Enter data into the User Details form. 

 Name – uniquely identifies the User, required field.  

 First Name and Last Name – attributes that help identify the User.  

 Organization – Organization for which the User works.  An example is the National 
Cancer Institute (NCI). 

 Department – Department for which the User works.  An example is caArray. 

 Title – Title for User.  

 Phone Number – provides contact information, typically the direct business phone 
number for the User.  The phone number field accepts the following formats: 
0123456789, 012-345-6789, (012)3456789, (012)345-6789, (012)-345-6789 

 Email Id – provides the email contact details for the User.  An email ID must contain an 
asterisk.  

 Password– an optional field used if the schema for Authorization will also be used for 
Authentication.  The only characters visible within this field are stars ‘*’ so the password 
is not visible on the screen. 

 Confirm Password – a copy of the password field.  It ensures the intended password 
was entered correctly.  This field must match the password field exactly. 

 User Start Date and User End Date – determine the period for which the User is a valid 
User. 

g. Select Update button. 
 



3. Delete an Existing User 
a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete the User. 

 

Privilege 

A Privilege refers to any operation performed upon data. Assigning Privileges helps control access to 
important components of an application (Protection Elements).   

The UPT installs with CSM Standard Privileges that were agreed upon by the Security Working Group.  
These privileges include the following: 

Standard Privileges    

Within CSM, users may possess one or more of the following privileges for a particular protection element:           

Privilege 
Name 

Privilege Definition Applying the 
Privilege (Example) 

CREATE This privilege grants permission to a user to 
create an entity.  This entity can be an object, a 
database entry, or a resource such as a network 
connection. 

 A user can 
create a 
database entry. 

ACCESS This privilege allows a user to access a particular 
resource.  Examples of resources include a 
network connection, database connection, 
socket, module of the application, or even the 
application itself. 

A user can gain 
access to a 
particular 
module in an 
application. 

READ This privilege permits the user to read data from 
a file, URL, socket, database, or an object. This 
can be used at an entity level signifying that the 
user is allowed to read data about a particular 
entry (which can be object or database row, etc.) 

A user can view 
personal 
information such 
as a Social 
Security 
Number. 

WRITE   This privilege allows a user to write data to a file, 
URL, socket, database, or object. This can also be 
used at an entity level signifying that the user is 
allowed to write data about a particular entity 
(which may include an object, database row, 
etc.) 

A user can add 
text to a 
database entry. 

UPDATE This privilege grants permission at an entity level 
and signifies that the user is allowed to update 
and modify data for a particular entity.  Entities 
may include an object, an attribute of the object, 
a database row, etc. 

A user can 
modify an 
object’s 
attribute data. 

DELETE This privilege permits a user to delete a logical 
entity. This entity can be an object, a database 

A user can 
delete record. 



entry, a resource such as a network connection, 
etc. 

EXECUTE This privilege allows a user to execute a 
particular resource. The resource can be a 
method, function, behavior of the application, 
URL, button etc. 

A user can click 
on a button to 
perform a 
method. 

If necessary in this section you may create new application-specific Privileges or modify existing Privilege 
details.  Here are the available operations: 

 

1. Create a New Privilege  
a. Go to the Privilege home page. 
b. Select Create a New Privilege. 
c. Enter data into the Privilege Details form. 

 Name – uniquely identifies the Privilege, required field.  

 Description – a brief summary describing the Privilege. 
d. Select Add button. 

 

2. Select an Existing Privilege and Update details 
a. Go to the Privilege home page. 
b. Click Select an Existing Privilege. 
c. Enter data into the Privilege Search Criteria form.  Search Privilege name. 
d. Click on the radio button corresponding with the intended Privilege name. 
e. Select View Details. 
f. Enter data into the Privilege Details form. 

 Name – uniquely identifies the Privilege, required field.  

 Description – a brief summary describing the Privilege. 
g. Select Update button. 

 

3. Delete an Existing Privilege 
a. Reach the Privilege Details form by either creating a new Privilege or Selecting an Existing 

Privilege. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 

  



6.6 Admin Mode 
 

6.6.1 Overview 
 

The Admin Mode of the UPT is divided into six major sections: Groups, Privileges, Protection Groups, Roles, 
and Users.  In these sections an Admin can perform basic functions such as modify, delete, or create, and 
manage associations between the objects. For example, you may assign Privileges to a Role.  Figure 6.3 
helps to illustrate how all objects (also referred to as elements) are related in the Authorization schema. 
Table 2 follows with definitions of each category of authorization. 

 

 

Figure 6.3 Relationships between objects in the Authorization Schema 
 
 

Definitions for Authorization Status 

User 

 

A User is someone who requires access to your application. Users 
can become part of a Group, and can have an associated Protection 
Group and Roles. 

Protection Element 

 

A Protection Element is any entity (typically data) that has controlled 
access. Examples include Social Security Number, City, and Salary. 

Privilege  A Privilege refers to any operation performed upon data.  CSM 
makes use of a standard set of privileges.  This will help standardize 
authorization to comply with JAAS and Authorization Policy and 
allow for adoption of technology such as SAML in the future. 



Definitions for Authorization Status 

Group 

 

A Group is a collection of application users. By combining users into 
a Group, it becomes easier to manage their collective roles and 
access rights in your application. 

Protection Group 

 

A Protection Group is a collection of application Protection 
Elements. By combining Protection Elements into a Protection 
Group, it becomes easier to associate Users and Groups with rights 
to a particular data set. Examples include Address and Personal 
Information. 

Role 

 

A Role is a collection of application Privileges. Examples include 
Record Admin and EmployeeModify. 

Final Association   

 

The final association is the correlation between a User and his Roles 
for a particular Protection Group. 

Each User (and Group) assumes Roles (rights) for a Protection Group (protected entities).  For 
example, User John has a Role EmployeeModify for all elements in the Address Protection 
Group. Assign PGs and Roles from the User or Group sections of the UPT. 

Table 2  Categories of authorization status 

 

6.6.2 Workflow 
 

The CSM team designed the UPT as a flexible tool with a flexible workflow.  Any operation can be 
completed quickly, however, at first it may be difficult to know where to start. The general concept of the 
workflow is to create the base elements first and then create the groupings and associations.  Here is the 
suggested workflow for getting started in the Admin Mode:  

 

1. Create base objects – Users and Protection Elements (CSM Standard Privileges are provided). 
2. Create collections of these objects (in any order): 

a. Groups 
i. Create Groups. 

ii. Assign Users to Groups. 
b. Protection Groups 

i. Create Protection Groups. 
ii. Assign Protection Elements to Protection Groups. 

c. Roles 
i. Create Roles. 

ii. Assign Privileges to Roles. 
3. Associate rights with Users and Groups (in any order). 

i. Assign a Protection Group and Roles to Users. 
ii. Assign a Protection Group and Roles to Groups. 

 



6.6.3 Navigation 
 

Use the gray menu to navigate through the Admin section.  From the Home page, the menu looks like this: 

 

Figure 6.4 Menu options in the Admin section of the home page 

The menu option with a blue background designates the current location.  Roll over the other choices until 
they turn blue, and then click to navigate to that section.  The Log Out selection returns the user to the 
Login page. 

User 

A User is simply someone that requires access to an application. In this section create new Users, modify 
existing User details, and associate or disassociate Users with a Protection Group and Roles.   The available 
operations are: 

1. Create a New User  
a. Go to the User home page. 
b. Select Create a New User. 
c. Enter data into the User Details form. 

 Name – uniquely identifies the User, required field.  

 First Name and Last Name – attributes that help identify the User.  

 Organization – Organization for which the User works.  An example is the National Cancer 
Institute (NCI). 

 Department – Department for which the User works.  An example is caArray. 

 Title – Title for User.  

 Phone Number – provides contact information, typically the direct business phone number 
for the User.  The phone number field accepts the following formats: 0123456789, 012-345-
6789, (012)3456789, (012)345-6789, (012)-345-6789 

 Email Id – provides the email contact details for the User.  An email ID must contain an 
asterisk.  

 Password– an optional field used if the schema for Authorization will also be used for 
Authentication.  The only characters visible within this field are stars ‘*’ so the password is 
not visible on the screen. 

 Confirm Password – a copy of the password field.  It ensures the intended password was 
entered correctly.  This field must match the password field exactly. 

 User Start Date and User End Date – determine the period for which the User is a valid 
User. 

d. Select Add button. 
 

2. Select an Existing User and Update details 
a. Go to the User home page. 
b. Click on Select an Existing User. 
c. Enter data into the User Search Criteria form.  Search by any combination of the below: 

 Name – uniquely identifies the User, required field.  

 First Name and Last Name – attributes that help identify the User.  

 Organization – Organization for which the User works.  An example is the National Cancer 



Institute (NCI). 

 Department – Department for which the User works.  An example is caArray. 

 Email Id – provides the email contact details for the User.  An email ID must contain an 
asterisk.  

d. Click on the radio button corresponding with the intended User name. 
e. Select View Details. 
f. Enter data into the User Details form. 

 Name – uniquely identifies the User, required field.  

 First Name and Last Name – attributes that help identify the User.  

 Organization – Organization for which the User works.  An example is the National Cancer 
Institute (NCI). 

 Department – Department for which the User works.  An example is caArray. 

 Title – Title for User.  

 Phone Number – provides contact information, typically the direct business phone number 
for the User.  The phone number field accepts the following formats: 0123456789, 012-345-
6789, (012)3456789, (012)345-6789, (012)-345-6789 

 Email Id – provides the email contact details for the User.  An email ID must contain an 
asterisk.  

 Password– an optional field used if the schema for Authorization will also be used for 
Authentication.  The only characters visible within this field are stars ‘*’ so the password is 
not visible on the screen. 

 Confirm Password – a copy of the password field.  It ensures the intended password was 
entered correctly.  This field must match the password field exactly. 

 User Start Date and User End Date – determine the period for which the User is a valid 
User. 

g. Select Update button. 
 

The User Details page displays the three buttons displayed in figure 18 below. The numbers above these 
buttons correspond to the operations that follow: 

 

 

Figure 6. 5 User Details Page button options 

  

3. Assign a User to a Group or Groups  
a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Associated Groups. 
c. Determine which of the available Groups to which the User should be assigned. Select these 

Groups by highlighting them (See Assignments and Associations for details). 
d. Click on the Assign and Deassign buttons until the proper association is displayed.  
e. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 

4. View User Report  

 4  5  

 

3  6 



This feature is new to the 3.0.1 release in response to a requirement formed by the caCORE team.  

This reporting functionality shows a user’s privileges for all of his protection elements. 

a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Associated PE & Privileges. 
c. View user’s privileges for each protection element. 
 

5. Update Roles associated with the assigned Protection Groups  
a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Associated PG & Roles.  The system displays a list of all associated Protection Groups and 

their Roles. 
c. Select the radio button that corresponds with the intended Protection Group.  
d. Determine which Roles you would like to assign to the User. 
e. Select the Role by highlighting the name (See Assignments and Associations for details). 
f. Click on the Assign and Deassign buttons until the proper association is displayed.  
g. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 

6. Assign a Protection Group and Roles to a User  
a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Assign PG & Roles. 
c. Determine which Protection Group and Roles you would like to assign to the User. 

1. Select the Protection Group by highlighting the name (See Assignments and Associations for 
details).   

2. Select the Roles by highlighting them. 
d. Click on the Assign and Deassign buttons until the proper association is displayed.  
e. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
7. Delete an Existing User 

a. Reach the User Details form by either creating a new User or Selecting an Existing User. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 

 

Protection Element 

A Protection Element is any entity (typically data) that is subject to controlled access.  CSM allows for a 
broad definition of Protection Element.  Nearly everything in an application can be protected – data, table, 
buttons, menu items, etc.  By identifying individual Protection Elements, it becomes easier to control 
access to important data.  In this section you may create new Protection Elements or modify existing 
Protection Element details.  Here are the available operations: 

 

1. Create a New Protection Element  
a. Go to the Protection Element home page. 
b. Select Create a New Protection Element. 
c. Enter data into the Protection Element Details form. 

 Name – uniquely identifies the Protection Element, required field.  



 Object Id – a string that the Application team assigns to the Protection Element 

 Attribute Name – helps to further identify the Protection Element  

 Description – a brief summary describing the Protection Element. 

 Update Date – indicates the date when the Protection Element's Details were last updated 

 Type – a string that the application team can assign to indicate type of protection element. 
d. Select Add button. 

 

2. Select an Existing Protection Element and Update details 
a. Go to the Protection Element home page. 
b. Click Select an Existing Protection Element. 
c. Enter data into the Protection Element Search Criteria form.  Search by any combination of the 

fields below: 

 Name – uniquely identifies the Protection Element. 

 Object Id – a string that the Application team assigns to the Protection Element 

 Attribute Name – helps to further identify the Protection Element  
d. Click the radio button corresponding with the intended Protection Element name. 
e. Select View Details. 
f. Enter data into the Protection Element Details form. 

 Name – uniquely identifies the Protection Element. 

 Object Id – a string that the Application team assigns to the Protection Element 

 Attribute Name – helps to further identify the Protection Element  

 Type – a string that the application team can assign to indicate type of protection element. 
 

g. Select Update button. 
 

3. Delete an Existing Protection Element 
a. Reach the Protection Element Details form by either creating a new Protection Element or 

Selecting an Existing Protection Element. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 

 

4. Assign a Protection Element to a Protection Group or Protection Groups 
a. Reach the Protection Element Details form by either creating a new Protection Element or 

Selecting an Existing Protection Element. 
b. Select Associated PGs. 
c. Determine which of the available Protection Groups to which the Protection Element should be 

assigned. 
1. Select these Protection Groups by highlighting them (See Assignments and Associations for 

details). 
d. Click on the Assign and Deassign buttons until the proper association is displayed.  
e. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 
 
 



Privilege 

A Privilege refers to any operation performed upon data.  Assigning privileges helps control access to 
important components of an application (Protection Elements).  CSM provides a standard set of privileges 
that populate automatically when creating the authorization schema (See Standard Privileges).   

Because Standard Privileges are provided the Privilege section does not contain Create, Delete, or Update 
functions.  However, you may search for and view existing privileges.  Use the Role section to assign 
privileges to roles. 

 

1. Select an Existing Privilege 
a. Go to the Privilege home page. 
b. Click Select an Existing Privilege. 
c. Enter data into the Privilege Search Criteria form.  Search Privilege name. 
d. Click on the radio button corresponding with the intended Privilege name. 
e. Select View Details. 
f. View data in the Privilege Details form. 

 Name – uniquely identifies the Privilege, required field.  

 Description – a brief summary describing the Privilege. 
 

Protection Group 

A Protection Group is a collection of application Protection Elements.  By combining Protection Elements 
into a Protection Group, it becomes easier to associate Users and Groups with rights to a particular data 
set.  In this section you may create new Protection Groups, modify existing Protection Group details, assign 
Protection Elements, and assign a parent for a Protection Group.   

The Protection Group is the only element that can have a Parent.  Using Parents is a way to group 
Protection Groups within Protection Groups.  This makes organizing users and their authorization rights 
easier.    

Here are the available Protection Group operations: 

1. Create a New Protection Group  
a. Go to the Protection Group home page. 
b. Select Create a New Protection Group. 
c. Enter data into the Protection Group Details form. 

 Name – uniquely identifies the Protection Group, required field.  

 Description – a brief summary describing the Protection Group.  

 Large Count Flag – used to indicate if the Protection Group has a large number of 
associated Protection Elements.  

 Update Date – indicates the date when this Protection Group’s Details were last updated 
d. Select Add button. 

 

2. Select an Existing Protection Group and Update details 
a. Go to the Protection Group home page. 
b. Click Select an Existing Protection Group. 
c. Enter data into the Protection Group Search Criteria form.  Search by Protection Group name. 



d. Click on the radio button corresponding with the intended Protection Group name. 
e. Select View Details. 
f. Enter data into the Protection Group Details form. 

 Name – uniquely identifies the Protection Group, required field.  

 Description – a brief summary describing the Protection Group.  

 Large Count Flag – used to indicate if the Protection Group has a large number of 
associated Protection Elements.  

 Update Date – indicates the date when this Protection Group’s Details were last updated 
g. Select Update button. 

 

3. Delete an Existing Protection Group 
a. Reach the Protection Group Details form by either creating a new Protection Group or Selecting 

an Existing Protection Group. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 

 

4. Assign Protection Elements to the Protection Group 
a. Reach the Protection Group Details form by either creating a new Protection Group or Selecting 

an Existing Protection Group. 
b. Select Associated PEs. 
c. Determine which of the available Protection Elements should be assigned to the Protection 

Group. 
1. Select these Protection Groups by highlighting them (See Assignments and Associations for 

details). 
d. Click on the Assign and Deassign buttons until the proper association is displayed.  
e. Save the association by clicking on Update Association. NOTE: No association is saved until this 

button is selected. 
 

5. Assign a Parent for the Protection Group 
a. Reach the Protection Group Details form by either creating a new Protection Group or Selecting 

an Existing Protection Group. 
b. Select Associated Parent PG. 
c. Determine which available Protection Group should be designated as the Protection Group 

Parent. 
1. Select the Parent by highlighting the name.  Only one parent may be assigned.  

d. Click on the Assign and Deassign buttons until the proper association is displayed.  
e. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 

Role 

A Role is a collection of Privileges.  By combining Privileges into a Role, it becomes easier to associate Users 
and Groups with rights to a particular data set.  In this section you may create new Roles, modify existing 
Role details, and assign or deassign Privileges to the Role.  Here are the available operations: 

 



1. Create a New Role  
a. Go to the Role home page. 
b. Select Create a New Role. 
c. Enter data into the Role Details form. 

 Name – uniquely identifies the Role, required field.  

 Description – a brief summary describing the Role.  

 Active Flag – indicates if the Role is currently active. 
d. Select Add button. 

 

2. Select an Existing Role and Update details 
a. Go to the Role home page. 
b. Click Select an Existing Role. 
c. Enter data into the Role Search Criteria form.  Search by Role name. 
d. Click the radio button corresponding with the intended Role name. 
e. Select View Details. 
f. Enter data into the Role Details form. 

 Name – uniquely identifies the Role, required field.  

 Description – a brief summary describing the Role.  

 Active Flag – indicates if the Role is currently active. 
g. Select Update button. 

 

3. Delete an Existing Role 
a. Reach the Role Details form by either creating a new Role or Selecting an Existing Role. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 
 

4. Assign Privileges to the Role 
a. Reach the Role Details form by either creating a new Role or Selecting an Existing Role. 
b. Select Associated Privileges. 
c. Determine which of the available Privileges should be assigned to the Role. 

1. Select these Roles by highlighting them (See Assignments and Associations for details). Click 
on the Assign and Deassign buttons until the proper association is displayed.  

d. Save the association by clicking on Update Association.  NOTE: No association is saved until 
this button is selected. 

 

Group 

A Group is a collection of application users. By combining users into a Group, it becomes easier to manage 
their collective roles and access rights in your application. Simply select an existing group, and associate a 
new Protection Group and Roles. Upon doing so, everyone in that particular Group has the same rights.  
Under the User portion of UPT you may assign users to Groups. In this section you may create new Groups, 
modify existing Group details, and associate or disassociate Groups' Protection Groups and Roles. Here are 
the available operations: 

 



1. Create a New Group  
a. Go to the Group home page. 
b. Select Create a New Group. 
c. Enter data into the Group Details form. 

 Name – uniquely identifies the Group, required field.  

 Description – a brief summary describing the Group.  
d. Select Add button. 

 

2. Select an Existing Group and Update details 
a. Go to the Group home page. 
b. Click on Select an Existing Group. 
c. Enter data into the Group Search Criteria form.  Search by Group name. 
d. Click on the radio button corresponding with the intended Group name. 
e. Select View Details. 
f. Enter data into the Group Details form. 

 Name – uniquely identifies the Group, required field.  

 Description – a brief summary describing the Group.  
g. Select Update button. 

 

The Group Details page displays the two buttons displayed in Figure 6.6. The numbers above these buttons 
correspond to the operations that follow: 

 

 

Figure 6.6                                                         

 

3. Associated Users  
h. Select Associated Users button. 
i. The Group and User Association screen displays a list of Assigned Administrators.  
j. Click Assign User to assign additional Users to the Group. 
k. Click Deassign User to deassign users. 
l. Select Update Association to save the changed associations. 
m. Select Back to return to the Group details screen. 

 

4. Associated PE & Privileges  
This feature is new to the 3.0.1 release in response to a requirement formed by the caCORE team.  

This reporting functionality shows a group’s privileges for all of its protection elements. 

a. Reach the Group Details form by either creating a new User or Selecting an Existing Group. 
b. Select Associated PE & Privileges. 
c. View group’s privileges for each protection element. 

 

5. Assign a Protection Group and Roles to a Group  

 

 

3  4  6

5 
 5 



d. Reach the Group Details form by either creating a new Group or Selecting an Existing Group. 
e. Select Assign PG & Roles. 
f. Determine which Protection Group and Roles you would like to assign to the Group. 

1. Select the Protection Group by highlighting the name (See Assignments and Associations 
for details). 

2. Select the Roles by highlighting them. 
g. Click on the Assign and Deassign buttons until the proper association is displayed.  
h. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 

6. Update Roles associated with the assigned Protection Groups  
a. Reach the Group Details form by either creating a new Group or Selecting an Existing Group. 
b. Select Associated PG & Roles. 
c. The system displays a list of all associated Protection Groups and their Roles. 
d. Select the radio button that corresponds with the intended Protection Group.  
e. Determine which Roles you would like to assign to the Group. 

1. Select the Role by highlighting the name (See Assignments and Associations for details). 
f. Click on the Assign and Deassign buttons until the proper association is displayed.  
g. Save the association by clicking on Update Association.  NOTE: No association is saved until 

this button is selected. 
 

7. Delete an Existing Group 
a. Reach the Group Details form by either creating a new Group or Selecting an Existing Group. 
b. Select Delete. 
c. In the pop-up window, click Okay to confirm intent to delete. 

 
 

InstanceLevel 

Instance Level is a feature provided by CSM to allow filtering of the instance of data directly at the database 

level by creating filter criteria's and linking them with allowed values from CSM tables. In this section you 

may create upload an application jar file containing the Hibernate file and the Domain Objects, Create a new 

Filter Clause or Search for existing filter clauses. Please begin by selecting Upload the Jar File, Add New 

Security Filter or Select an Existing Security Filter 

 

1. Uploading a File 



 
a. Go to the Instance Level home page. 
b. Select Upload the Jar File. 
c. On the File Upload Form enter the following: 

 Application Jar File – The path of the application jar file containing hibernate configuration 
and mapping files and domain object.  

 Application Jar File – In case of any SDK generated system there are two jar generated. The 
second jar can be uploaded using this field 

 Hibernate Configuration File Name – The fully qualified name of the hibernate 
configuration file in the jar. 

d. Select Upload button. 
 

2. Add New Security Filter 

 
a. Go to the Instance Level home page. 
b. Click Add New Security Filter. 
c. On the Add New Security Filter screen enter the following: 

 Class Name - This the class for which you want to create a filter clause.  

 Filter Chain – This is a chain of the associated objects on which the security of the class 
depends upon. In case of the inherited security you can follow the trail to the target class by 
selecting the associated class and pressing the Add button. You can remove the last 
associated class by pressing Remove button. If the security of the Class is dependant on it 
own self, then you can select the same Class (with the suffix self) in the Filter Chain. Once 
you have done selecting the filter chain, you can press Done to indicate that.  

 Target Class Attribute Name - Field get populated with the all the attributes of the Final 
Target Class.  



 Target Class Name – Alternatively if you want to provide an alias for the Target Class Name 
then you can do so by providing a value for the Target Class Alias field.  

 Target Class Attribute Name – Same way you can provide an alias for the Target Class 
Attribute Name by providing a value for the Target Class Attribute Alias field. 

d. The click the final Add button to add the filter into the screen 
 

3. Selecting an Existing Security Filter 
a. Go to the Instance Level home page. 
b. Click Select an Existing Security Filter. 
c. On the Search Criteria Screen enter the following: 

 Class Name - This the class for which you want to retrieve the filter clause.  
 

 

d. On the Result screen select the Filter Clause which you want to update or delete. 
e. On the Filter Clause Details Screen there is only one screen editable 

 Generated SQL – This is the only editable field on this page. It is the filter SQL that is 
generated by Hibernate based on filter criteria selected above by the user. NOTE: Once you 
edit the SQL there is no way it can be regenerated without deleting and creating the filter 
clause again. Also, make sure you follow the Hibernate Filter SQL specifications and have a 
valid working filtering SQL. 

 

 
 

f. In order to update the record click Upload button or use the Delete button to delete the 
record. 

 



6.7 UPT Installation and Deployment 

6.7.1 Release Contents 
 

The UPT is released as a compressed web application in the form of a WAR (Web Archive) File. Along with 
the WAR, the release includes sample configuration files that help developers configure the UPT with their 
application(s). 

The UPT Release contents can be found in the UPT.zip file found on the NCICB download site 
(http://ncicb.nci.nih.gov/download/index.jsp). The UPT Release contents include the files in Table 6.24 

File Description 

upt.war  The UPT Web Application 

Hibernate.cfg.xml  The sample XML file which contains the hibernate-
mapping and the database connection details. 

AuthSchemaMySQL.sql  

OR 

AuthSchemaOracle.sql  

This Structured Query Language (SQL) script is used to 
create an instance of the Authorization database 
schema which will be used for the purpose of 
authorization.  In the 3.0.1 and subsequent releases, 
this script populates the database with CSM Standard 
Privileges that can be used to authorize users.  The 
same script can be used to create instances of 
authorization schema for a variety of applications. 

DataPrimingMySQL.sql  

OR 

DataPrimingOracle.sql  

 

This SQL script is used for priming data in the UPT’s 
authorization schema. 

mysql-ds.xml  

OR 

oracle-ds.xml 

This file contains information for creating a 
datasource. One entry is required for each database 
connection.  Place this file in the JBoss deploy 
directory. 

Table 6.24 UPT release contents 

6.7.2 Installation Modes 
UPT was developed as a flexible application that can be deployed in multiple ways depending on the need 
or scenario. The three primary modes to install the UPT include the following and are described in the 
following sections: 

 Single Installation, Single Schema 

 Single Installation, Multiple Schemas 

 Local installation, Local schema 

http://ncicb.nci.nih.gov/download/index.jsp


6.7.2.1 Single Installation, Singe Schema 
 

In the single installation, single schema deployment scheme as shown in Figure 6-25, there is only one 
instance of UPT hosted on a Common JBoss Server. A common installation is used to administer the 
authorization data for all applications. The authorization data for all the applications is stored on a 
common database. Therefore an application using UPT does not have to install its own authorization 
schema. Also, all applications can use the same hibernate-config file since they point to the same 
database. 

 

  

 

Figure 6-25 Single installation, single schema deployment scheme 

 

6.7.2.2 Single Installation, Multiple Schema 
 

As in the single schema deployment, the single installation, multiple schemas deployment calls for the UPT 
to be hosted on a single JBoss Common Server as shown in Figure 6-26. A common installation is also used 
to administer the authorization data for all applications. What makes this mode different is that an 
application can use its own authorization schema on a separate database if preferred. The authorization 
data can sit on individual databases, and at the same time some applications can still opt to use the 
Common Authorization Schema. Using this mode requires each application to maintain its own hibernate-
config file pointing to the database where its Authorization Schema is located. So when an application uses 
the UPT, the UPT communicates to the authorization schema of that application only. 

  

UPT   

Common  

Authorization   
Database   

App 1   

Ap p 2   



 

 

Figure 6-26 Single installation, multiple schemas deployment scheme; the three colors of arrows 
correspond to the three different applications shown 

 

 

6.7.2.3 Local Installation, Local Schema 
 

The local installation, local schema deployment is the same as single installation, single schema, except 
that the UPT is hosted locally by the application as shown in Error! Reference source not found.. This 
nstallation of UPT is not shared with other applications. This local installation is used to administer the 
authorization data for that particular application (or set of related applications) only. The authorization 
data for the application sits on its own database. In this scenario, the application requires its own 
hibernate-config file pointing to the database where its Authorization Schema is located. 

 

 

 

UPT 

App 1 

Authorization 

database for App 

1 

Authorization 

database for App 

2 App 3 

Common 

Authorization 

Database 

App 2 



 

Figure 6-27 Single installation, single schema deployment scheme 

 

 

6.7.3 Deployment Checklist 
 

Before deploying the UPT, verify the following environment and configuration conditions are met. This 

software and access credentials/parameters are required. 

 Environment 

o JBoss 4.0 Application Server 

o MySQL 4.0 OR Oracle 9i Database Server (with an account that can create databases) 

 UPT Release Components 

o upt.war  

o AuthSchemaMySQL.sql  | AuthSchemaOracle.sql  

o DataPrimingMySQL.sql  | DataPrimingOracle.sql  

 

6.7.4 Deployment Steps 
 

Step 1: Create and Prime MySQL Database 

 

1. Log into the database using an account id which has permission to create new databases. As you follow 
the deployment steps, use the files containing the name corresponding with your database. Make sure 
that the database you are about to create doesn’t already exist. If it does, then drop it to recreate new 
one.   

2. In the AuthSchemaMySQL.sql file replace the <<database_name>> tag with the name of the UPT 
Authorization schema – csmupt.  

UPT 

Authorization 

Database 

App 1 



3. Run this script on the database prompt. This should create a database with the given name.   

4. In the DataPrimingMySQL.sql file, replace: 

o The <<super_admin_login_id>> with the login id of the user who is going to act as the 

Super Admin for that particular installation 

o Also provide the first name and last name for the same by replacing 

<<super_admin_first_name>> with first name and <<super_admin_last_name 

>> with last name. 

5. Replace the <<application_context_name>> with a application name of the application for 
which UPT is being hosted 

6. Run the script on the database prompt. This should populate the database with the initial data. Verify 
by querying the csm_application, csm_user, csm_protection_element and 
csm_user_protection_element tables. They should have one record each. The database will include 
CSM Standard Privileges and the csm_privilege table should have 7 entries. 

 

Step 2: Configure Datasource 

1.  Modify the mysql-ds.xml file which contains information for creating a datasource. One entry is 

required for each database connection.  Edit this file to replace:   

o The <<application_context_name>> tag with the name of the authorization schema – 

csmupt. 

o The <<database_user_id>> with the user id - ncisecurity. 

<<database_user_password>> with the password of the user account. 

o The <<database_url>> with the URL needed to access the Authorization Schema residing on 

the database server - jdbc:mysql://<<prod _database_server_name>>:3306/csmupt 

Shown in Figure  is an example mysql-ds.xml file. 



 

Figure 1 Example mysql-ds.xml file 

2.  Place the mysql-ds.xml file in the JBoss deploy directory - {jboss-

home}/server/default/deploy/ 

Step 3: Configure the JBoss JAAS Login parameters 

In order to configure the UPT to verify against the LDAP, create an entry in the login-config.xml of 

JBoss as shown in Figure . This entry configures a login-module against the UPT application context. The 

location of this file is {jboss-home}/server/default/conf/login-config.xml. 

 

Figure 2 Example login-config.xml entry 

As shown in Figure : 

<application-policy name = "csmupt"> 

<authentication> 

<login-module code = 

"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" 

flag = "required" > 

<module-option 

name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-option>  

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-

option> 

<module-option name="ldapUserIdLabel">cn</module-option> 

</login-module> 

</authentication> 

</application-policy> 

<?xml version="1.0" encoding="UTF-8"?> 

<datasources> 

  <local-tx-datasource> 

    <jndi-name>csmupt</jndi-name> 

    <connection-

url>jdbc:mysql://Prod_DB.nci.nih.gov:3306/csmupt</connection-url> 

    <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource>   

</datasources> 



 The application-policy is the name of the application for defining the authentication policy – in 

this case, csmupt.  

 The login-module is the LoginModule class which is used to perform the authentication task; in this 

case, it is -gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.  

 The flag provided is ―required‖.  

 The module-options list the parameters which are passed to the LoginModule to perform the 

authentication task. In this case, they are pointing to the NCICB LDAP Server: 

<module-option name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-

option> 

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

<module-option name="ldapUserIdLabel">cn</module-option> 

Step 4: Deploy the UPT  war file 

1.  Copy the upt.war in the deployment directory of JBoss which can be found at {jboss-

home}/server/default/deploy/ 

Step 5: Enable Audit Logging 

1. In order to activate the CLM’s Audit Logging capabilities for UPT, the user needs to following the steps 
to deploy Audit Logging service as mentioned in the section above. 

2. Also the clm.jar needs to be placed in the common lib directory of the JBoss server 

 

Step 5: Start JBoss 

1.  Once the deployment is completed, start JBoss. Check the logs to confirm there are no errors while the 

UPT application is deployed on the server. 

2.  Once the JBoss server has completed deployment, open a browser to access the UPT. The URL will be 

http://<<jboss-server>>/upt, where the <<jboss-server>> is the IP or the DNS name 

of JBoss Server. 

3.  The UPT Login Page displays. Enter the UPT Application using the login-id that was assigned to the 

Super Admin in Step 1 and its password. Also use the UPT Application Name specified in Step 4 for the 

Application Name. 

4.  You should be able to login successfully and the UPT Application Home Page displays. 

Note: In case of any errors, follow a debugging and trouble shooting procedure to diagnose and solve the 

issues. 

 



7. CSM Web Services Users Guide 

7.1 Overview 
 

The Common Security Module Security Web Services are introduced to expose the CSM authentication 

and Authorization service features. The Security Web Services currently provide only two operations; 

namely Login and CheckPermission. The operations are exposed versions available in CSM API’s. 

7.2 Web Service WSDL and Operation 

7.2.1 Security Web Service WSDL 
 

The CSM Security Web Service WSDL is shown in the below. The name of the exposed web service is 

‘SecurityService’.  Currently two operations are available namely Login and CheckPermission. The web 

service operations are explained in detail in the following sections. 

 

Figure 7.1 Security Web Service WSDL. 

7.2.2 Login Operation 
The Login web service operation is a request/response operation. This operation receives a 

LoginRequestMessage, performs authentication and responds with LoginResponseMessage to the web 

service consumer. If there are any problems with the processing the LoginRequestMessage and/or 

performing authentication on the user credentials then the web service operation will return a SOAP Fault 

response error message indicating an error code and the error details.  



 

Figure 7.2 Schema (XSD) for Authentication 

 

As displayed in the Figure 7.2. The LoginRequest message consists of three parameters, namely Username, 

password and ApplicationContext.  The Apache AXIS framework validates all request and response 

messages against the Schema specified in the Security WS WSDL. When the LoginRequest message is 

received by the web service operation, the User credentials from the LoginRequest message are used by 

the CSM API to authenticate the user against privilege for the ‘ApplicationContext’. If the User is 

authenticated and has privilege to access the ApplicationContext then a LoginResponse is returned with 

result value of ‘true’. If the user is not authenticated and does not have access privilege for the 

‘ApplicationContext’ then a LoginResponse is returned with the result value of ‘false’.  

7.2.3 CheckPermission Operation 
 

The Checkpermisson web service operation is a request/response operation. This operation receives a 
CheckPermissionRequestMessage, performs a permission check and responds with 
CheckPermissionResponseMessage. If there are any problems then the web service operation will return a 
SOAP Fault response error message indicating an error code and the error details. 

<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authentication"  

   xmlns:authentication="http://security.nci.nih.gov/ws/authentication"  

   elementFormDefault="qualified" 

   attributeFormDefault="qualified"  

   version=".1"> 

<xs:element name="LoginRequest" type="authentication:LoginRequest"/> 

  <xs:complexType name="LoginRequest"> 

   <xs:sequence> 

    <xs:element name="UserName" type="xs:string"/> 

    <xs:element name="Password" type="xs:string"/> 

    <xs:element name="ApplicationContext" type="xs:string"/> 

   </xs:sequence> 

 </xs:complexType> 

 <xs:element name="LoginResponse" type="authentication:LoginResponse"/> 

  <xs:complexType name="LoginResponse"> 

   <xs:sequence> 

    <xs:element name="Result" type="xs:boolean"/> 

   </xs:sequence> 

  </xs:complexType> 

</xs:schema> 



 
Figure 7.3 Schema for Authorization 

 

As displayed in the Figure 7.3. The CheckPermission request message consists of User name or Group 

name, ObjectId, Attribute, Privilege and ApplicationContext.  The Apache AXIS framework validates all 

request and response messages against the Schema specified in the Security WS WSDL. When the 

CheckPermission request message is received by the web service operation, the CSM API’s 

checkpermission method is invoked to check permission. If the User or Group has permission then a 

CheckPermissionResponse is returned with result value ‘true’ otherwise result value is ‘false’. 

7.3 Workflow for CSM Security Web Service 
 

This workflow section outlines the basic steps, both strategic and technical, for successful CSM Security 

Web Services integration.    

1)     Read the deployment steps from this document and also read the CSM Guide for Application 

Developers.  It provides an overview, workflow, and specific deployment and integration steps. 

2)     Determine the security requirements and provision security with CSM’s UPT.  

3)     After the Security Web Service is deployed and user security provisioned with UPT. The Security 

Web Service is ready operable and consumption 

<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authorization" 

  xmlns:authorization="http://security.nci.nih.gov/ws/authorization" 

  elementFormDefault="qualified" 

  attributeFormDefault="qualified" version=".1"> 

<xs:element name="CheckPermissionRequest" type="authorization:CheckPermissionRequest"/> 

<xs:complexType name="CheckPermissionRequest"> 

    <xs:sequence> 

      <xs:choice> 

 <xs:element name="UserName" type="xs:string"/> 

 <xs:element name="GroupName" type="xs:string"/> 

      </xs:choice> 

      <xs:element name="ObjectId" type="xs:string"/> 

      <xs:element name="Attribute" type="xs:string" nillable="true"/> 

      <xs:element name="Privilege" type="xs:string"/> 

      <xs:element name="ApplicationContext" type="xs:string"/> 

   </xs:sequence> 

</xs:complexType> 

<xs:element name="CheckPermissionResponse" 

type="authorization:CheckPermissionResponse"/> 

<xs:complexType name="CheckPermissionResponse"> 

    <xs:sequence> 

      <xs:element name="Result" type="xs:boolean"/> 

    </xs:sequence> 

</xs:complexType> 

</xs:schema> 



4)    Using the CSM Web Services Interface use the authentication and authorization operation 

exposed. 

5)     Using the LoginRequestMessage invoke and consume Login Web Service Operation. 

6)     Using the CheckPermissionRequestMessage invoke and consume the CheckPermission Web 

Service operation. 

7.4 Installation of CSM Security Web Service 
 

Step 1: Create and Prime Database 

1.  Log into the database using an account id which has permission to create new databases. As you 

follow the deployment steps, use the files containing the name corresponding with your database. 

Make sure that the database you are about to create doesn’t already exist. If it does, then drop it 

to recreate new one.   

2.  In the AuthSchemaMySQL.sql file replace the <<database_name>> tag with the target applications 

scheme – csmupt. 

 3.  Run this script on the database prompt. This should create a database with the given name.   

4.  In the DataPrimingMySQL.sql file, replace: 

o The <<super_admin_login_id>> with the login id of the user who is going to act as the Super 
Admin for that particular installation. For example “doej” for John Doe admin. 

o Also provide the first name and last name for the same by replacing 
<<super_admin_first_name>> with Doe and <<super_admin_last_name >> with Joe. 

5. Replace the <<application_context_name>> with a test application entry – ‘abc_app’.  For example: 
Application name is ‘abc_app’ and application schema name is ‘abc_app’. For the sake of this 
document we will use schema ‘abc_app’ and the application as ‘abc_app’. 

6. Run the script on the database prompt. This should populate the database with the initial data. 
Verify by querying the application, user, protection_element and user_protection_element tables. 
They should have one record each. The database will include CSM Standard Privileges and the 
privilege table should have 7 entries. 

Step 2: Configure Datasource 

Modify the mysql-ds.xml file which contains information for creating a data source. One entry is 

required for each database connection.  Edit this file to replace:   

o The --database_user_name-- with the user id. . --database_user_password--with the password of 
the user account. 

o The --database_url-- with the URL needed to access the Authorization Schema residing on the 
database server - jdbc:mysql://<<stage_database_server_name>>:<<port>>/<<database_name>> 

Shown in Figure  is an example mysql-ds.xml file. 



 

Figure 7.4 Example mysql-ds.xml file 

2.  Place the mysql-ds.xml file in the JBoss deploy directory - {jboss-home}/server/default/deploy/    

Step 3: Configure the JBoss JAAS Login parameters 

1. In order to configure the CSM Web Service to verify against the LDAP, create an entry in the login-
config.xml of JBoss as shown in Figure . This entry configures a login-module against the ‘abc_app’ 
application context. The location of this file is {jboss-home}/server/default/conf/login-config.xml. 

 

Figure 7.5 Example login-config.xml entry 

As shown in Figure : 

<application-policy name = "abc_app"> 

  <authentication> 

    <login-module code = 

"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag 

= "required" > 

<module-option 

name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-option> 

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

      <module-option name="ldapUserIdLabel">cn</module-option> 

    </login-module> 

  </authentication> 

</application-policy> 

<?xml version="1.0" encoding="UTF-8"?> 

<datasources> 

  <local-tx-datasource> 

    <jndi-name>abc_app_ds</jndi-name> 

    <connection-url> 

jdbc:mysql://<<database_server_name>>:<<port>>/<<database_name>></con

nection-url> 

   <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource>   

</datasources> 



 The application-policy is the name of the application for defining the authentication policy – in this 
case, ‘abc_app’.  

 The login-module is the LoginModule class which is used to perform the authentication task; in this 
case, it is -gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.  

 The flag provided is “required”.  

 The module-options list the parameters which are passed to the LoginModule to perform the 
authentication task. In this case, they are pointing to the NCICB LDAP Server: 

<module-option name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-option> 

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option> 

<module-option name="ldapUserIdLabel">cn</module-option> 

Simultaneously you can also point to a RDBMS database containing the username and password 

information. The configuration steps for the same are provided in the CSM’s Guide for Application’s 

Developers 

Step 4: Deploy the Security WS war file 

1.  Copy the securityws.war in the deployment directory of JBoss which can be found at {jboss-

home}/server/default/deploy/ 

 

8. CSM Instance Level and Attribute Level Security 

8.1.1 Prior to CSM 4.0 
 

Previously CSM APIs provided instance level and attribute level security. However this security is provided 

in the java tier. The typical flow of events in case of instance level security would be as follows. The user 

fires a business query on the database to obtain the resultset. Now the entire resultset is iterated through 

in java and for each and every record in it, a call is made to the CSM APIs to check if the user has access to 

that particular instance or not. Also in case of attribute filtering the for each of the accessible object in the 

resultset you need to invoke the CSM APIs to check which attributes the user can see. 

In the both the solutions mentioned above, there are several issues 

1. The entire result set is to be returned from the database to the application resulting in network traffic 

and latency 

2. Once the resultset is obtained, it needs to be iterated through in java adding to processing time 

3. For each record there is a database call to CSM to determine if the user has access or not. 

As part of CSM 4.0 the design addresses all the performance issues mentioned above. 

 



8.1.2 Instance Level 

8.1.2.1 Requirements Addressed 
 

As part of CSM 4.0, following functional requirements are addressed and provided as part of the instance 

level security solution 

1. Direct Instance Level Security 
The solution provides Direct Instance Level Security. Direct Instance Level Security can be defined as 

where security for a particular instance is dependent on its own self. A user has access to a particular 

object based on the value of one of its attribute. There is no relation or association with another 

object. This type of instance level security is adhoc and dependant on the associations done between 

that instance and the user by security admin 

For e.g. Out of 456 patients in the patient table, user ABC has access to these assigned 28 based on the 

patient id. 

Here out of the total patients in that database, the security admin has assigned 28 patient ids to the 

user ABC. Based on this the solution should filter any query fired on that patient table such that for 

that user ABC only those 28 records are accessible. 

2. Cross Dependant Instance Level Security 
The solution provides Cross Dependant Instance Level Security. Cross Dependant Instance Level 

Security can be defined as where security for a particular instance is dependent on some other object. 

A user has access to a particular object based on its association to some other higher level object on 

which the user has been granted access. There is an association with another object which is generally 

higher up in the data graph. This type of instance level security is based on the relationship between 

the queried tables to the table to which the security is assigned. This type of security is used generally 

where it is much easier to assigned and manage security at a higher level of data  

For eg. User has access only those Lab Results which are associated to the Study (via patients) on which 

he as access. 

Here in this example there can be 1000s of Lab Results where as the Studies could be in 10s. Also as 

per the business rule, if you are assigned access to the Study then you can access everything associated 

to that study. Also in case the assignment and management of security is much easier with Studies as 

they are less in number. 

3. Provides Integration of Instance Level Security for an SDK generated system 
The instance level solution is integrated with SDK so that it can be provided as an out of the box 

solution for SDK generated systems.  

4. Provides Instance Level Security Support for a Non SDK system 



The Solution provided is adaptable for Non SDK systems with minor modifications if required. The general 

principle should be same as for an SDK generated system. It can be assumed that users will need to 

configure the solution and adapt it for their application. 

8.1.2.2 Overall Design 
 

In order to provide instance level security, CSM utilizes the filter capability provided by hibernate. These 

filters contain filtering queries which are injected to the actual business queries which are fired by the 

user. These filters are applied at class level. So whenever that class is queried the attached filter is 

appended to the actual business query directly by Hibernate.  

CSM provides capabilities for creating these filters through its UPT tool. It allows you to configure these 

filters for either the Direct of Cross Dependant type of instance level security. These filters contain queries 

which join with the CSM tables to obtain the instances of data on which the user has access.  These filters 

are stored in the CSM database. At run time the client application calls CSM’s helper methods which 

retrieve these filters from the CSM Database. They also inject these filter into hibernate configuration for 

the appropriate classes.  

Now since these filters are to be applied for a particular user, the user name is passed as parameters to 

these filters. So at run time filter queries are inject into the actual user queries. This combined query is 

fired at the database and the resulting data is filtered based on the instances on which the user has access. 

8.1.2.3 Provisioning Instance Level Security 
 

A new menu tab has been added to UPT for the purpose of provisioning Instance Level Security.  This tab 

lets them configure the filter clauses for various classes in their application. Once the filtering clauses are 

configured then the admins can create Protection Elements for the Instances of Objects on which the users 

have access and assign them access. The following activity diagram shows how the new menu tab for 

adding the filter clause would operate. These details for these operations are provided in the UPT User 

Guide Section of this document. 

Also Protection Element has been enhanced to now include a new value field which the admins can use to 

provide values for the instances on which the users have access. 

Following is the workflow for provisioning instance level security 

1. Uploading an Application File 
The first step is to upload a file which contains the hibernate files along with the domain objects. This 

file should be a valid java archive and contain the following 

 Hibernate Configuration File – with database connection information 

 Hibernate Mapping files 



 Domain Objects 

In case of an SDK generated system, there are two jar files generated containing the Hibernate and 

Domain Objects separately. In this case both these files have to be uploaded. 

Also a fully qualify hibernate configuration file name should be provided along with the files. Once the 

file is successfully uploaded a success message is given to the user. 

2. Creating a Filter Clause 
Once the file containing Hibernate information is uploaded we can use it to create filter clause for 

different objects. 

On the filter clause screen, user first has to select the class for which he wants to add the filter. Once 

the class is selected, the second combo box is automatically populated with the associated classes. 

NOTE: There is an entry for the master class itself in the list. This is to allow for direct instance level 

security. 

If you want to provision a Direct Instance Level Security then select the class itself in the second combo 

and press done.  

In case of Cross Dependant Security, select the associated class in the second combo. Note that you 

can drill down the class hierarchy by pressing the Add button. This will bring the associated child 

classes. Once you have reached the final class on which the security for the class is dependant you can 

press done. 

On pressing done the attribute list combo is populated with the attributes from the last class in the 

filter chain. Select the attribute on whose value the user will be granted access. 

 Once selected you can also provide an alias for the target class name and attribute. This is in cases 

where the attribute selected holds value for some other class. For example you have a Patient Object 

which has an attribute Security Key on whose value you want to filter the instances. However from a 

business perspective, the actual value in the Security Key is the value of the Study Id to which the 

patient belongs. In this case even though the security filter is set for the Patient based on the security 

key attribute, however in business sense the filtering is happening at the Study Id Level. Hence you can 

provide this alias which will be used to determine the protection elements on which the user has been 

granted access. 

Once everything is selected, pressing the Add filter will create the filter. Once the filter is created a 

filtering SQL is generated and displayed back to the user. Note that this field is kept editable to allow 

users to modify the SQL in case if they want to optimize it further. 

 

3. Creating Protection Element 
Once the security filters have been created, you need to provision the actual instances on which the 

user has access. This is done by creating protection elements for these instances and providing the 

access to the users. 



Following is description of the Protection Element Fields which admin has to create and grant it to the user 

Field Name Description 

Protection Element Name Distinct name which can identify the Protection Element 

Protection Element Description Description for the Protection Element 

Protection Element Type Can be left blank 

Protection Element Object Id The target class name on which the security of the master class 

depends. If an alias class name is used, then the alias should be entered 

here. 

Protection Element Attribute The name of the attribute of the target class on which the security of 

the master class depends. If an alias attribute name is used then the 

alias should be entered here 

Protection Element Value The actual value of the attribute on which user has access. 

Update Date Date when the protection element was last updated 

Table 8.1 Protection Element fields. 

 



Figure 8.2 Instance Level activity Flow 

 

 

8.1.2.4 Using Instance Level Security 
 

In order for the Client application to inject Instance Level Security, CSM provides a helper class which 

assists them. This class contains methods which allow the user to add these filters to the Hibernate 

 

ad Instance Level Activ itiy Flow

Instance Level Home

Screen

Login

New Filter Clause Entry

Screen

Search for Filter ClauseUpload the Hibernate Jar

File

List of Resulting Filter

Clause

Create a new Filter

Clause

Filter Clause Detail

Screen

Modify Filter ClauseDelete Filter Clause

Select a Filter Clause



Configuration at the time of loading of the system and also initialize and parameterize these filters at run 

time for a particular user who is firing the query.  

 

This method should be called only once for an application just after the Hibernate Configuration object is 

created by reading the configuration file and before the Session Factory Method is created. This method 

injects the security filters which are created for this application. It retrieves a list of all the filters which 

have been defined for this application from the CSM Database. Now for each filter in the list, it creates a 

new FilterDefinition (Hibernate) object. It then retrieves the Persistent Class from the passed Configuration 

Object using the class name for which the filter is defined. It then adds the filter to the persistent class by 

setting the filtering query. 

 

This method is ivoked after obtaining the Session from the SessionFactory and just before executing the 

user query. This method initializes the filters that are already added to the Sessionfactory. This method 

first obtains the list of all the defined filters from the SessionFactory in the passes Session object. It then 

just iterates through the filter list and sets the user name and the application name parameter. It retrieves 

the Application Name from the passed Authorization Manager. 

8.1.2.5 Known Issues 
 

1. In case of  eager loading filtering of the child object doesn’t work 
Hibernate by default inject only the filter for the parent object, so incase you have the eager loading 

mode set to true, the child object’s (the associated objects which are eagerly loaded) filter are not 

injected. SDK by default comes with eager loading set to false leaving up to the users to explicitly turn 

it on. 

2. Multiple filters on a single object will be always ANDed  
If you have multiple filters defined for a single domain object, Hibernate would inject all of them with 

an AND conditions between them. This is the default behavior of Hibernate and would require 

programmatic enhancements to handle the ORing of filters 

3. Filtering incase of inheritance needs to be further investigated 
Hibernate DTD has a limitation not allowing user to add a filter for the inherited classes. The DTD 

allows filters only to be added to the super class. However Hibernate API allows adding of these filters. 

This issue will be investigated in detail during implementation and results will be posted accordingly. 

 

public static void initializeFilters (String userName, Session session, AuthorizationManager authorizationManager) 

public static void addFilters( AuthorizationManager authorizationManager, Configuration configuration) 



8.1.3 Attribute Level 

8.1.3.1 Requirements Addressed 
 

As part of CSM 4.0, following functional requirements are addressed and provided as part of the attribute 

level security solution 

1. Attribute Level Security 
The solution provides Attribute level security at object level. Attribute level security can be defined as 

security where you can control access to the attributes of an object. A user can be granted and revoked 

access to these attributes. Based on the user’s access level, those attributes should be visible to the 

user or not.  

For example: A Patient object has the following five attributes Name, Address, Social Security, Phone 

Number and Disease. Then a researcher who has access to all the attributes except Social Security 

should be able to see the Patient object with all attributes except the Social Security attributed filled 

with data. 

2. It works for both single or many object retrieval 
The solution provides Attribute level security both for queries which result in a single object being 

returned from the database as well as a list of the objects being returned from the database. In case of 

the list each object in the list should be filtered based attributes to which the user has access too.  

3. It automatically provides Attribute Level Security for an SDK generated system 
Attribute Level Security is integrated with SDK so that it can be provided as an out of the box solution 

for SDK generated systems. 

4. Solution should provide Attribute Level Security Support for a Non SDK system 
The Solution provided should be adaptable for Non SDK systems with minor modifications if required. 

The general principle should be same as for an SDK generated system. It can be assumed that users will 

need to configure the solution and adapt it for their application. 

8.1.3.2 Overall Design 
 

CSM utilized the SessionInterceptor feature provided by Hibernate to inject attribute level security. It traps 

a user session during the loading of an object from the underlying database. During the load process it 

intercepts the incoming stream of result data from the underlying database and checks as to which 

attributes the user has access to. If not then it just nullifies the attribute value such that the resulting 

object contains value for only those attributes on which they have access. 

Since it would need to access CSM table to check if user has access to an attribute or not every time an 

object is loaded, the solution implements a cache which holds the users attribute access map. The 



interceptor looks up against this cache to inject attribute level security this way speeding up the overall 

filtering process.  

8.1.3.3 Provisioning Attribute Level Security 
 

There are new special changes in the UPT for provisioning of Attribute Level Security.  If attribute level 

security is turned on, by default all object attributes are secured. So if you want to grant access to an 

attribute to the user then you will have to create a protection element for that attribute and grant access 

to it to the user like any other protection element.  

Following is description of the Protection Element Fields which admin has to create and grant it to the user 

Field Name Description 

Protection Element Name Distinct name which can identify the Protection Element 

Protection Element Description Description for the Protection Element 

Protection Element Type Can be left blank 

Protection Element Object Id The class name on whose attribute the user is to be granted access 

Protection Element Attribute The attribute name on which the user is to be granted access 

Protection Element Value Can be left blank 

Update Date Date when the protection element was last updated 

 Table 8.3 Protection Element Fields. 

8.1.3.4 Using Attribute Level Security 
 

In order to use Attribute Level Security, the Client Application will have to attach the attribute level Session 

interceptor to its session.  This can be done at the time of obtaining the Hibernate Session from the 

SessionFactory object as shown below. Once the session interceptor is in place it will inject Attribute level 

security every time an object is loaded from the database for a query 

 

8.1.3.5 Know Issues 
 

1. In case of  eager loading the attribute filtering happens only for parent object 

Session session = sessionFactory.openSession(new AttributeSecuritySessionInterceptor()); 



The onLoad method is invoked for each record returned from the database. However this works only 

for the parent object, so if you have eager loading set to true, the child object’s (the associated objects 

which are eagerly loaded) attributes aren’t filtered. SDK by default comes with eager loading set to 

false leaving up to the users to explicitly turn it on. 

2. Primitive attribute type filtering is not possible 
Since a primitive data type cannot be set to null, the current attribute solution doesn’t work if the 

domain objects contain primitive data types as attribute. The default values for primitive (0 for int, 

false for a boolean) can be a valid value, hence setting primitive attributes to their default values is also 

not an option. 

3. Filtering on queries with projection on certain attributes won’t work 
For queries, where the user have set a project on certain attributes of the object rather than returning 

the whole object back, this solution won’t work. This is because in case of projections, Hibernate 

returns the attribute value is directly from the database as Java data types. As a result, the onLoad 

method of the session interceptor is not invoked thereby not injecting the attribute level security. 

 

9. CSM Acegi Adapter 

9.1 Overview 
 

The Acegi Framework1 is quickly becoming the preferred framework for many Spring2 framework powered 

applications to implement security. Acegi Security is the de facto standard for security in Spring 

Framework. Existing applications and new applications wanting to leverage CSM can do so now with the 

CSM Acegi Adapter. The CSM Acegi Adapter allows applications to use CSM’s Authentication and 

Authorization under the Acegi Security Framework. 

 CSM Acegi Adapter implementation provides Authentication, Authorization - Method Level Security and 

Object Parameter level security.  

9.1.1 Implementation 
 

Acegi Security is widely used within the Spring community for comprehensive security services to Spring-

powered applications. It comprises a set of interfaces and classes that are configured through a Spring IoC 

container. The design of Acegi Security allows many applications to implement the common enterprise 

application security requirements via declarative configuration settings in the IoC container. Acegi Security 

                                                           
1
 http://www.acegisecurity.org/ 

2
 http://www.springframework.com/  

http://www.acegisecurity.org/
http://www.springframework.com/


is heavily interface-driven, providing significant room for customization and extension. Important Acegi 

Security, like Spring, emphasizes pluggability.  

 

 

 

 
Figure 9.1 Authentication and Authorization in Acegi Framework. 

Figure 9.1 demonstrates the control flow by Acegi for authentication and authorization. The CSM Acegi 

Adapter uses this approach to provide CSM Adapter. Authentication is implemented by extending this 

design. Acegi provides Interceptors which can be configured through Acegi Security Configurations in 

Spring. For a detailed understanding of the Acegi Frameworks Authentication and Authorization 

implementation by CSM please refer the following section.  

NOTE: The detailed explanation of Acegi interfaces that are implemented by CSM Acegi Adapter is beyond 

the scope of this guide. Refer the Acegi Security CSM Adapter Design document for details and check out 

acegi security reference documentation. 

Currently the CSM Acegi Adapter implementation provides Method Level and Method Parameter Level 

security. 

 

9.1.1.1 Method Level Security 
 

http://www.acegisecurity.org/guide/springsecurity.html


The current out of box implementation of the CSM Acegi Adapter provides method level security. The 

Adapter implements Acegi’s MethodInterceptor The CSMMethodSecurityInterceptor, CSM’s custom 

implementation of the MethodInterceptor, enables security at method level by intercepting method calls 

on the secured bean specified in the MethodDefinitionSource. All the methods will be intercepted for each 

secured bean.  Please see the Workflow and Integrating and Configuring sections for more details. 

 

9.1.1.2 Method Parameter Level Security 
 

In this implementation the CSM Acegi Adapter provides method parameter level security. Applications that 

need method parameter level security have to implement CSM’s SecurityHelper. The SecurityHelper 

interface, provided by CSM, allows the application to control authorization. Refer the CSM API source for 

more details.  

9.1.2 Workflow 
 

1) Determine the level of security required for your application – Method level, Object Parameter 

Level etc. 

2) Define the beans that need to be protected 

3) Define appropriate Security Interceptors. 

4) Define Security Interceptors for various beans that need protection. 

5) Configure the csm-acegi-security.xml acegi security configuration file. 

6) Configure a JAAS LoginModule for the Application Context. 

7) Configure Database properties. 

8) Configure User provisioning using CSM UPT. 

9.1.3 Integrating and Configuring  
 

This section serves as a guide to help developers integrate applications with CSM Acegi Adapter. It outlines 

a step by step process that addresses what developers need to know in order to successfully integrate 

CSM’s Acegi Adapter into their applications, which includes: 

 Configure Acegi Security  in csm-acegi-security.xml 

 Database properties and configuration 

o Configure Datasource OR 

o Configure Hibernate configuration file 

 LDAP properties and configuration 

 Provision user access authorization policy 

https://gforge.nci.nih.gov/frs/download.php/2667/CSM_API_4_0_Source.zip


9.1.3.1 Configure Acegi Security 
 

1. Define the beans that need to be protected. 

For Example from Appendix A:  

<bean id='applicationService' class='test.gov.nih.nci.security.acegi.sdk.ApplicationServiceImpl' /> . 

This configuration will secure ApplicationServiceImpl class and intercept all its method calls. 

2. Define the SecurityHelper Impl Class. This class needs to be implemented by the developers that want 

to integrate CSM Adapter into their new or existing Application with Acegi Security Framework. In this 

implementation it is a custom CSMMethodSecurityInterceptor that intercepts any method calls on the 

‘applicationService’ bean. 

Example: <bean id='securityHelper' class='test.gov.nih.nci.security.acegi.sdk.SecurityHelperImpl' /> 

3. List the beans that need to be protected by the ‘securityInterceptor’ for the ‘autoProxyCreator’. 

Example:  

<bean id='autoProxyCreator' 

class='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator'> 

<property name='interceptorNames'> 

  <list> 

   <value>securityInterceptor</value> 

  </list> 

 </property> 

 <property name='beanNames'> 

  <list> 

   <value>applicationService</value> 

  </list> 

 </property> 

</bean> 

4. Specify the Application Context that will be used for CSM’s Authentication and Authorization service. 

Example:  

<bean id="userDetailsService"  

 class="gov.nih.nci.security.acegi.authentication.CSMUserDetailsService"> 

<!-- Specify the Application Context required by CSM --> 

 <property name="csmApplicationContext"> 

  <value>acegitest</value> 

 </property> 

</bean> 

 

9.1.3.2 Database properties and configuration 
 

 



Create and Prime Database 

Note: When deploying Authorization, application developers may want to make use of a previously-
installed common Authorization Schema. In this case, a database already exists, so skip this step. Follow 
the steps below to install a new Authorization Schema.  Note that the Authorization Schema used by the 
run-time API and the UPT has to be the same. 

7. Log into the database using an account id which has permission to create new databases. Based on the 
database you have selected, you must follow the same step during the entire installation 

8. In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script, replace the “<<database_name>>” tag 
with the name of the authorization schema (e.g. “acegitest”). 

9. Run this script on the database prompt. This should create a database with the given name.  The 
database will include CSM Standard Privileges. 

10. Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the 
“<<application_context_name>>” with the name of application. This is the key to derive security for 
the application. This will be called application context name. 

11. Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the 
“<<super_admin_login_id>>”, “<<super_admin_first_name>>” and “<<super_admin_last_name>>” 
with the super admin user’s login id, first name and the password. NOTE: that the default password is 
always “changeme” and this should used for logging into the application’s UPT for the first time. It 
should be changed immediately 

12. Run this script on the database prompt. This should populate the database with the initial data. Verify 
this by querying the application table. It should include one record only. 

 

Configure Datasource 

 

1. Modify the provided mysql-ds.xml or oracle-ds.xml file which contains information for 
creating a datasource. One entry is required for each database connection.  Edit this file to replace: 

a. The <<application_context_name>> tag with the name of the authorization schema (for 
example, “acegitest”). 

b. The <<database_user_id>> with the user id and <<database_user_password>> with 
the password of the user account, which will be used to access the Authorization Schema created 
in Step 1 above. 

c. The <<database_url>> with the URL needed to access the Authorization Schema residing on 
the database server. 

3.  
 
Shown in Figure 5.11 is an example of the mysql-ds.xml file. 



 

Figure 9.2 Example mysql-ds.xml file 

 

4. Place the mysql-ds.xml or oracle-ds.xml file in the JBoss deploy directory.   

If the integrating Application does not want to use datasources then the hibernate configuration file can 

be used. 

Configure Hibernate Configuration file 
 

 1. Modify the provided mysql-ds.xml or oracle-ds.xml file which contains information for 
creating a datasource. One entry is required for each database connection.  Edit this file to replace: 

a. The <<application_context_name>> tag with the name of the authorization schema (for 
example, “csmupt”). 

b. The <<database_user_id>> with the user id and <<database_user_password>> with 
the password of the user account, which will be used to access the Authorization Schema created 
in Step 1 above. 

c. The <<database_url>> with the URL needed to access the Authorization Schema residing on 
the database server. 

 
Shown in Figure 5.11 is an example of the acegitest.new.csm.hibhernate.xml file for application 

context ‗acegitest‘. 

<datasources> 

  <local-tx-datasource> 

    <jndi-name>csmupt</jndi-name> 

    <connection-url>jdbc:mysql://mysql_db:3306/csmupt</connection-url> 

    <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource> 

  <local-tx-datasource> 

    <jndi-name>acegitest</jndi-name> 

    <connection-url>jdbc:mysql://mysql_db:3306/csd</connection-url> 

    <driver-class>org.gjt.mm.mysql.Driver</driver-class> 

    <user-name>name</user-name> 

    <password>password</password> 

  </local-tx-datasource> 

</datasources> 

 



 

Figure 9.3 Example acegitest.new.csm.hibernate.cfg.xml 

 

9.1.3.3  Configure JAAS LoginModule 
 

Configuring a Login Module in JAAS 
 

Developers can configure a login module for each application by making an entry in the JAAS configuration 
file for that application name or context. 

<?xml version='1.0' encoding='UTF-8'?> 

<!DOCTYPE hibernate-configuration PUBLIC  "-//Hibernate/Hibernate Configuration DTD  2.0//EN" 

"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd"> 

<hibernate-configuration> 

    <session-factory> 

        <property name="connection.url">jdbc:mysql://<<server>>:<<port>>/acegitest</property> 

        <property name="dialect">org.hibernate.dialect.MySQLDialect</property> 

        <property name="connection.username">USERNAME</property> 

        <property name="connection.password">PASSWORD</property> 

        <property name="connection.driver_class">org.gjt.mm.mysql.Driver</property> 

         <property name="hibernate.show_sql">false</property> 

        <property name="connection.zeroDateTimeBehavior">convertToNull</property> 

          <property name="hibernate.cache.use_query_cache">false</property> 

        <property name="hibernate.cache.use_second_level_cache">false</property>    

     

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/Privilege.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/Application.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/Role.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/dao/hibernate/RolePrivilege.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/dao/hibernate/UserGroup.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/dao/hibernate/ProtectionGroupProtectionElement.hbm.xml"/>      

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/Group.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/User.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/ProtectionGroup.hbm.xml"/> 

        <mapping resource="gov/nih/nci/security/authorization/domainobjects/ProtectionElement.hbm.xml"/> 

        <mapping 

resource="gov/nih/nci/security/authorization/domainobjects/UserGroupRoleProtectionGroup.hbm.xml"/> 

        <mapping 

resource="gov/nih/nci/security/authorization/domainobjects/UserProtectionElement.hbm.xml"/> 

          

    </session-factory> 



The general format for making an entry into the configuration files is shown in Figure 5.3.2. 

 

Figure 9.1.3.3 configuring a login module 

For acegitest, which uses RDBMSLoginModule, the JAAS configuration file entry is shown in Figure 5.3.2. 

 

Figure 9.1.3.3 acegitest application JAAS configuration file entry 

The configuration file entry contains the following: 

 The application is acegitest.  

 The ModuleClass is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule  

 The Required flag indicates that authentication using this credential source is a must for overall 
authentication to be successful.  

 The ModuleOptions are a set of parameters which are passed to the ModuleClass to perform its 
actions. 

 In the prototype, the database details as well as the query are passed as parameters: driver=" 

org.gjt.mm.mysql.Driver " 

url=" jdbc:mysql://<<server>>:<<port>>/acegitest " 

 user="USERNAME" 

 passwd="PASSWORD" 

 query="SELECT * FROM users WHERE username=? and password=?" 

encryption-enabled="YES" 

 

acegitest 

{ 

gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required  

driver=" org.gjt.mm.mysql.Driver"  

url=" jdbc:mysql://<<server>>:<<port>>/acegitest "  

user="USERNAME"  

passwd="PASSWORD"  

query="SELECT * FROM users WHERE username=? and password=?" 

encryption-enabled="YES"; 

} 

Application 1 { 

          ModuleClass  Flag    ModuleOptions; 

          ModuleClass  Flag    ModuleOptions; 

          ... 

      }; 

Application 2 { 

          ModuleClass  Flag    ModuleOptions; 

          ... 

      }; 

       

 



As shown in Figure 9.5, since ‘acegitest’ application has only one credential provider, only one 

corresponding entry was made in the configuration file. If the application uses multiple credential 

providers, then the LoginModule’s can be stacked. A single configuration file can contain entries for 

multiple applications. 

9.1.3.4 User provisioning via UPT 
 

 Create Protection Elements for objects that need to be secured. 

 Create Protection Group for the Protection Elements. 

 Create a Role with Privilege assigned to it. 

 Create a User. 

 Assign Protection Group and Role to the Users that are allowed access. 

 

10. CSM caGrid Integration 
 

caGrid3 is a core infrastructure project of the cancer Bio Informatics Grid. It consists of architectural 
components and tools which enable any applications to be deployed on the grid as a node. It also provides 
tools for discovering these services and invoking them.  

 

In order to be able to securely invoke the grid services, the caGrid architecture needs to authenticate and 
authorize the user trying to make the service call. This would require both a authoring mechanism to 
provide appropriate permissions to the user and a run time mechanism to verify these granted permission. 

 

Since CSM provides the above mentioned capabilities, the below mentioned solution describes how CSM 
can be leveraged in the grid environment. 

10.1 Authentication 
 

CSM is enhanced to return a subject for a user upon authentication. This subject contains user’s attributes 
like Last Name, First Name and Email Id that are required to prepare the SAML which is to be sent to 
Dorian4.  

10.1.1 CSM configuration for IdP / Authentication Service 
 

As Part of v3.2, CSM is also integrated into the caGrid IDP module to facilitate local authentication. In order 

                                                           
3
 http://cagrid.org  

4
 http://www.cagrid.org/mwiki/index.php?title=GAARDS:Main  

http://cagrid.org/
http://www.cagrid.org/mwiki/index.php?title=GAARDS:Main


to support creation of SAML assertions by the IDP, CSM needs to retrieve user attributes from the 
Credential Providers and supply them back to the caGrid component. In order to be able to retrieve these 
attributes, CSM provides configuration settings which can be used to map them to individual credential 
providers. These attributes are returned as CSM currently return Principles in a JAAS Subject as part of the 
following new method added to the AuthenticationManager 

 

Following are the attributes that are returned and their corresponding PrincipleNames 

 First Name  - gov.nih.nci.security.authentication.principal.FirstNamePrincipal 

 Last Name  - gov.nih.nci.security.authentication.principal.LastNamePrincipal 

 Email Id   - gov.nih.nci.security.authentication.principal.EmailIdPrincipal 

 First Name  - gov.nih.nci.security.authentication.principal.LoginIdPrincipal 

Both RDBMSLoginModule and LDAPLoginModule have been updated to return these attributes. Following 

two sections talk about how it is done. 

10.1.1.1 Configuring RDBMS Login Module for CSM-caGrid IDP Integration 
 

If an application uses an RDMBS Server from which the user attributes are to be retrieved to the above 
mentioned attribute mapping should be added in the JAAS login-config file. Following is a sample entry for 
the same in JAAS login.conf file 

 

RDBMSGRID{ 

  gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required 

  driver="org.gjt.mm.mysql.Driver"  

  url="jdbc:mysql://mysql_db_server:3620/CSMAuthSchema" 

  user="USER "  

  passwd="PASSWORD"  

  TABLE_NAME="CSM_USER" 

  USER_LOGIN_ID="LOGIN_NAME" 

  USER_PASSWORD="PASSWORD" 

  USER_FIRST_NAME="FIRST_NAME" 

  USER_LAST_NAME="LAST_NAME" 

  USER_EMAIL_ID="EMAIL_ID"; 

}; 

public Subject authenticate(String userName, String password) throws CSException, CSLoginException, 

CSInputException, CSConfigurationException, CSInsufficientAttributesException; 



Where  

 TABLE_NAME is the name of the table where the attributes can be found 

 USER_LOGIN_ID is the name of the column in the table storing the user’s login id 

 USER_PASSWORD is the name of the column in the table storing the user’s password 

 USER_FIRST_NAME= is the name of the column in the table storing the user’s first name 

 USER_LAST_NAME= is the name of the column in the table storing the user’s last name 

 USER_EMAIL_ID= is the name of the column in the table storing the user’s email id 
 

NOTE: In order to activate the CLM’s Audit Logging capabilities for the Authentication Service, the user 

needs to follow the steps to deploy Audit Logging service as mentioned in the Audit Logging section below 

10.1.1.2 Configuring LDAP Login Module for CSM-caGrid IDP Integration 
 

If an application uses an LDAP Server from which the user attributes are to be retrieved to the above 
mentioned attribute mapping should be added in the JAAS login-config file. Following is a sample entry for 
the same in JAAS login.conf file  

 

Where  

 USER_FIRST_NAME is the ldap attribute which stores the first name 

 USER_LAST_NAME is the ldap attribute which stores the last name 

 USER_EMAIL_ID is the ldap attribute which stores the email id 
 

LDAPGRID{ 

  gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required 

  ldapHost="ldap://ncicbds-dev.nci.nih.gov:389" 

  ldapSearchableBase="ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov" 

  ldapUserIdLabel="uid" 

  ldapAdminUserName="uid=csmAdmin,ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov" 

  ldapAdminPassword="PASSWORD" 

  USER_FIRST_NAME="givenName" 

  USER_LAST_NAME="sn" 

  USER_EMAIL_ID="mail"; 

}; 

LDAPGRID{ 

  gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required 

  ldapHost="ldap://ncicbds-dev.nci.nih.gov:389" 

  ldapSearchableBase="ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov" 

  ldapUserIdLabel="uid" 

  ldapAdminUserName="uid=csmAdmin,ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov" 

  ldapAdminPassword="PASSWORD" 

  USER_FIRST_NAME="givenName" 

  USER_LAST_NAME="sn" 

  USER_EMAIL_ID="mail"; 

}; 



10.2 Authorization 

10.2.1 Using Grid Group Nam es for Check Permission 
 

As part of the CSM caGrid Integration, CSM now allows users to check permission using the Grid Grouper 

Group Name. Earlier the check permission method took only user name and checked permission for that 

particular user. However now new methods have been introduced which can take in a group name and 

check permission against the group name.  

Alternatively there are other two methods provided which returns the list of all the groups which have the 

said privilege on a particular resource.  

Following are the method definition. More details are provided in the javadocs  

 

NOTE: if you are using Group level security then at the time of provisioning you need make sure that the 

group name provided to the group (via UPT) is same as the Grid Grouper group name 

 
 

10.3 Migrating from CSM v3.2 to CSM v4.0  

10.3.1 MySQL Migration 
 

The following procedure defines in detail the steps needed to update the MySQL database from an existing 

3.1 authorization schema to a new 4.0 authorization schema:  

1. Obtain the CSM API v4.0 Release from NCICB Download Center [http://ncicb.nci.nih.gov/download] 

2. In the MigrationScript3.2MySQL.sql from the CSM API v4.0 Release, change the <<database_name>> 

with the name of the database. 

3. Go to the directory which contains the executables for MySQL and provide the following command. 

public boolean checkPermissionForGroup(String groupName, String objectId, String attributeName, String privilegeName) 

throws CSException; 

public boolean checkPermissionForGroup(String groupName, String objectId, String privilegeName) throws CSException; 

public List getAccessibleGroups(String objectId, String privilegeName) throws CSException; 

public List getAccessibleGroups(String objectId, String attributeName, String privilegeName) throws CSException; 



mysql --user=[user_name] --password=[password] -h [hostname] [auth_schema] < 

MigrationScript4.0MySQL.sql  

 [user_name] is the user name used to connect the MySQL database 

 [password] is the password for the user name 

 [hostname] is the host URL where the MySQL database is hosted. If you are running this command 

from the same machine where MySQL is hosted, you do not need to provide this parameter. 

 [auth_schema] is the name of the database created using the new authorization schema.  

 [MigrationScript4.0MySQL.sql] is the file containing the data exported from the old schema, which 

needs to be loaded into the new schema 

4. Verify that there are no errors in the SQL Script executed. Also make sure that the database has been 

appropriately updated. 

 

10.3.2 Oracle Migration 

 

The following procedure defines in detail the steps needed to update the Oracle database from an existing 

3.2 authorization schema to a new 4.0 authorization schema:  

1. Obtain the CSM API v4.0 Release from NCICB Download Center [http://ncicb.nci.nih.gov/download] 

2. Log onto Oracle Server into the Schema where the CSM Database is present using either SQL Plus or 

TOAD or any other tool. 

3. Copy all the SQL commands from MigrationScript4.0Oracle.sql from the CSM API v4.0 Release, and 

paste them on the SQL Editor/Console. Now execute all these commands in a batch. 

4. Verify that there are no errors in the SQL Script executed. Also make sure that the database has been 

appropriately updated. 

 

Appendix A: CSM Acegi Sample configuration File 
 

<?xml version='1.0' encoding='UTF-8'?> 

<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN' 'http://www.springframework.org/dtd/spring-

beans.dtd'> 

<beans> 

 

 <!-- This is the bean that needs to be protected. --> 

 <bean id='applicationService' 

 ='test.gov.nih.nci.security.acegi.xyzApp.ApplicationServiceImpl' /> 



<!—The application integrating CSM Acegi adapter needs to provide actual implementation for 

SecurityHelper. The class name to reflect the  impl of SecurityHelper--> 

 <bean id='securityHelper' 

 ='test.gov.nih.nci.security.acegi.xyzApp.SecurityHelperImpl' /> 

 

 <!-- This bean defines a proxy for the protected bean. Notice that --> 

 <!-- the id defined above is specified. When an application asks Spring --> 

 <!-- for a applicationService it will get this proxy instead. --> 

 <bean id='autoProxyCreator' 

 ='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator'> 

  <property name='interceptorNames'> 

   <list> 

    <value>securityInterceptor</value> 

   </list> 

  </property> 

  <property name='beanNames'> 

   <list> 

    <value>applicationService</value> 

   </list> 

  </property> 

 </bean> 

 

 <!-- This bean specifies which roles are authorized to execute which methods. --> 

 <bean id='securityInterceptor' 

 ='gov.nih.nci.security.acegi.CSMMethodSecurityInterceptor'> 

  <property name='securityHelper' ref='securityHelper' /> 

  <property name='authenticationManager' 

  ='authenticationManager' /> 

  <property name='accessDecisionManager' 

  ='accessDecisionManager' /> 

  <property name='afterInvocationManager' 

  ='afterInvocationManager' /> 

  <property name='objectDefinitionSource' 

  ='csmMethodDefinitionSource' /> 

 </bean> 

 

 <bean id='csmMethodDefinitionSource' 

 ='gov.nih.nci.security.acegi.authorization.CSMMethodDefinitionSource'> 

  <property name='methodMapCache' 

  ='ehCacheBasedMethodMapCache' /> 

 </bean> 

 <bean id='ehCacheBasedMethodMapCache' 

 ='gov.nih.nci.security.acegi.authorization.EhCacheBasedMethodMapCache'> 

  <property name="cache"> 

   <bean 

   ="org.springframework.cache.ehcache.EhCacheFactoryBean"> 

    <property name="cacheManager"> 

     <bean 

     ="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" /> 

    </property> 

    <property name="cacheName" value="userCache" /> 

   </bean> 



  </property> 

 </bean> 

 

 <!-- This bean specifies which roles are assigned to each user. --> 

 <bean id="userDetailsService" 

 ="gov.nih.nci.security.acegi.authentication.CSMUserDetailsService"> 

  <!--                                                                                   --> 

 <!-- Specify the Application Context required by CSM --> 

  <!--                                                                                   --> 

  <property name="csmApplicationContext"> 

   <value>acegitest</value> 

  </property> 

 </bean> 

 

 <!-- This bean specifies that a user can access the protected methods --> 

 <!-- if they have any one of the roles specified in the objectDefinitionSource above. --> 

 <bean id='accessDecisionManager' 

 ='org.acegisecurity.vote.AffirmativeBased'> 

  <property name='decisionVoters'> 

   <list> 

    <ref bean='roleVoter' /> 

   </list> 

  </property> 

 </bean> 

 

 <!-- The next three beans are boilerplate. They should be the same for nearly all applications. --> 

 <bean id='authenticationManager' 

 ='org.acegisecurity.providers.ProviderManager'> 

  <property name='providers'> 

   <list> 

    <ref bean='authenticationProvider' /> 

   </list> 

  </property> 

 </bean> 

 

 <bean id='authenticationProvider' 

 ='gov.nih.nci.security.acegi.authentication.CSMAuthenticationProvider'> 

  <property name='userDetailsService' ref='userDetailsService' /> 

 </bean> 

 

 <bean id='roleVoter' 

 ='gov.nih.nci.security.acegi.authorization.CSMRoleVoter' /> 

 

 <bean id='afterInvocationManager' 

 ='gov.nih.nci.security.acegi.CSMAfterInvocationProviderManager'> 

  <property name='providers'> 

   <list> 

    <ref bean='afterInvocationProvider' /> 

   </list> 

  </property> 

 </bean> 

 



 <bean id='afterInvocationProvider' 

 ='gov.nih.nci.security.acegi.CSMAfterInvocationProvider' /> 

 

</beans>  



Glossary  
 

The following table contains a list of terms used in this document, with accompanying definitions. 

 

Term Definition 

Acegi Acegi is a security framework that provides a powerful, flexible security 

solution for enterprise software, with a particular emphasis on 

applications that use the Spring Framework.  Acegi Security provides 

comprehensive authentication, authorization, instance-based access 

control, channel security and human user detection capabilities.  See 

http://www.acegisecurity.org/ for more information. 

Ant Apache Ant is a Java-based build tool used to perform various build 

related tasks.  For more information on how Ant is used within the SDK.  

See http://ant.apache.org/ for more information on Ant itself. 

caGrid The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual 

informatics infrastructure that connects data, research tools, scientists, 

and organizations to leverage their combined strengths and expertise in 

an open federated environment with widely accepted standards and 

shared tools. The underlying service oriented infrastructure that supports 

caBIG™ is referred to as caGrid. See http://www.cagrid.org 

Ehcache Ehcache is a simple, fast and thread safe cache for Java that provides 

memory and disk stores and distributed operation for clusters.  CSM uses 

ehcache in conjunction with Hibernate.  See 

http://sourceforge.net/projects/ehcache for more information. 

Hibernate Hibernate is an object-relational mapping (ORM) solution for the Java 

language, and provides an easy to use framework for mapping an object-

oriented domain model to a traditional relational database. Its purpose is 

to relieve the developer from a significant amount of relational data 

persistence-related programming tasks.  See http://www.hibernate.org/ 

for more information. 

JAR JAR file is a file format based on the popular ZIP file format and is used 

for aggregating many files into one. A  JAR file is essentially a zip file that 

contains an optional META-INF directory. 

JAAS The JAAS 1.0 API consists of a set of Java packages designed for user 

authentication and authorization. It implements a Java version of the 

standard Pluggable Authentication Module (PAM) framework and 

http://www.acegisecurity.org/
http://ant.apache.org/
http://sourceforge.net/projects/ehcache
http://www.hibernate.org/


Term Definition 

compatibly extends the Java 2 Platform's access control architecture to 

support user-based authorization. 

  

SAML Security Assertion Markup Language (SAML) is an XML standard for 

exchanging authentication and authorization data between security 

domains, that is, between an identity provider (a producer of assertions) 

and a service provider (a consumer of assertions). SAML is a product of 

the OASIS Security Services Technical Committee 

Spring Spring Framework is a leading full-stack Java/JEE application framework. 

Led and sustained by Interface21, Spring delivers significant benefits for 

many projects, increasing development productivity and runtime 

performance while improving test coverage and application quality. See 

http://www.springframework.org/ for more information. 

WSDD An acronym for Web Service Deployment Descriptor, which can be used 

to specify resources that should be exposed as Web Services.  See 

http://ws.apache.org/axis/java/user-

guide.html#CustomDeploymentIntroducingWSDD for more information. 

WSDL An acronym for Web Services Definition Language, which is an XML-

based language that provides a model for describing Web services.  See 

http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL 

for more information. 

 

http://www.springframework.org/
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

